Individual course details | ||||||||||
Study programme | THEORETICAL AND EXPERIMENTAL PHYSICS | |||||||||
Chosen research area (module) | ||||||||||
Nature and level of studies | ||||||||||
Name of the course | Differential Geometry in Physics | |||||||||
Professor (lectures) | Milan Damnjanovic | |||||||||
Professor/associate (examples/practical) | Marko Milivojevic | |||||||||
Professor/associate (additional) | ||||||||||
ECTS | 10 | Status (required/elective) | elective | |||||||
Access requirements | Mathematical Physics 1, Mathematical Physics 2, Theoretical Mechanics | |||||||||
Aims of the course | Basic aquaintance with the concepts of differential geometry. | |||||||||
Learning outcomes | Getting a unified understanding of the fundamental fields of physics (mechanics, thermodynamics, electrodynamics, relativity). | |||||||||
Contents of the course | ||||||||||
Lectures | 1.
Manifolds and bundles. 2. Vector and tensor fields. 3. Algebra of sifferential forms. 4. Parallel transport, connection. 5. Curvature. 6. Applications: Simplectic spaces 7. Berry phase. 8. Theoretical mechanics. 9. Gauge fields. 10. Generalization of vector analysis. 11. Шварцшилдова метрика. |
|||||||||
Examples/ practical classes | Exercises, discussions, seminars, homeworks. | |||||||||
Recommended books | ||||||||||
1 | Dubrovin, B.A., Fomenko, A.T., Novikov, S.P; Modern Geometry - Methods and Applications (Springer, МИР). | |||||||||
2 | M. Damnjanovic; Elementi diferencijalne geometrije i opste teorije relativnosti, Beograd 2000. | |||||||||
3 | ||||||||||
4 | ||||||||||
5 | ||||||||||
Number of classes (weekly) | ||||||||||
Lectures | Examples&practicals | Student project | Additional | |||||||
Teaching and learning methods | Lectures/exercises/computer practice/homeworks. | |||||||||
Assessment (maximal 100) | ||||||||||
assesed coursework | mark | examination | mark | |||||||
coursework | 10 | written examination | ||||||||
practicals | 10 | oral examination | 50 | |||||||
papers | ||||||||||
presentations | 30 | |||||||||