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Abstract

In this dissertation we present the investigation of optical non-degenerate four wave

mixing (FWM) in co-propagating geometry and slowing of the short light pulses in

hot vapor of potassium 39K atoms. The enhancement of nonlinear coefficients is

achieved by using the double-Λ scheme implemented on the D1 line of 39K between

hyperfine sublevels of the ground-state 4S1/2 and the first excited state 4P1/2 and

the quantum coherence established between F = 1 and F = 2 sublevels of the

ground-state by the strong pump beam.

In the first part of the thesis we’ve investigated the efficiency of the FWM pro-

cess under different experimental circumstances and were set the find the values of

experimental parameters that maximize it. The main figure of merit is the gain of

the probe and the conjugate beam which represent the intensity amplification factor

of these beams in the FWM process.

The dependence of the of gain on one-photon detuning reveals the competition

between two effects - FWM and one-photon absorption. Both processes are inversely

proportional to the one-photon detuning and we set out to find the point of best

trade-off between them. The best result found was for 700 MHz where we measured

the conjugate gain of 82. In all of the measurements we have adjusted the two-

photon detuning to account for the AC Stark shift introduced by the strong pump.

The strength of AC Stark shift effect drops as we move away from the resonance

which was verified by the smaller value of two-photon detuning needed for obtaining

the maximal gain for higher values of one-photon detuning.

Dependence on temperature, the angle between the pump and the probe and

on the pump intensity were also investigated. The increase in temperature leads

both to the increase of the concentration of potassium atoms and and hence to the

increase of cross-coupling susceptibilities responsible to FWM on one side and to

the increase of Doppler width and one-photon absorption on the other. Due to this

effects the higher gain for conjugate at higher temperatures wasn’t observed but we

did measure the highest gain of 63 for the probe beam at 150◦C. Like in other alkali

vapors a small angle between the pump and the probe was needed for achieving the



best phase matching. In the case of potassium that angle was measured to be 2

mrad. Finally we were able to observe FWM for low pump intensities achievable by

conventional diode lasers which opens up the possibility of investigation these kind

of phenomena with less expensive and more maintainable types of lasers.

Next we’ve searched for the optimum experimental parameters that would give

the best results for the slowing of short Gaussian light pulses in terms of fractional

delay and fractional broadening. The best results achieved was the fractional delay

of 1.1 with the fractional broadening of 1.2 for pulse length of τ = 120 ns and δ

= 2 MHz, ∆ = 1 GHz, T = 120oC, Ipump = 200 mW, Iref = 20µW, Θ = 3mrad

with the probe gain of 16. Subsequent research has showed a rather flat dependency

on two-photo detuning and the pump intensity which stands in contrast with the

investigation in rubidium and sodium.

We’ve also performed research over several lengths of Gaussian light pulses. With

lowering the temporal width of the light pulse its width in frequency domain in-

creases which leads to the different slowing of larger number of Fourier components

and to the larger broadening of the light pulse. In that sense the optimal length

of the light pulse which would have a fractional delay larger than one (a condition

needed for the use of short light pulses in optical delay lines) and minimal broadening

was 120 ns.

We have also compared our results with the results of slowing pulses in sodium

and rubidium vapor and concluded that results in potassium are better or compa-

rable for similar experimental conditions.
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Sažetak

U ovoj disertaciji je predstavljeno istraživanje optičkog nedegenerisanog četvorotalasnog

mešanja (ČTM) u kopropagirajućoj geometriji i usporavanje kratkih svetlosnih im-

pulsa u toploj pari atoma kalijuma 39K. Pojačavanje nelinearnih koeficijenata ost-

varano je korǐsćenjem dvostruke Λ šeme implementirane na D1 liniji 39K izmedju

hiperfinih podnivoa osnovnog stanja 4S1/2i prvog ekscitovanog stanja
4P1/2 i kvantne

koherencije ostvarene izmedju F = 1 i F = 2 podnivoa osnovnog stanja delovanjem

jakog pumpnog snopa.

U prvom delu teze istraživana je efikasnost ČTM u različitim eksperimentalnim

uslovima sa ciljem nalaženja vrednosti eksperimentalnih parametara koji je maksi-

malizuju. Glavna merena veličina je pojačanje probnog i konjugovanog snopa. Ona

predstavlja faktor pojačanja ovih snopova u procesu ČTM.

Zavisnost pojačanja od jednofotonskog razdešenja otkriva kompeticiju izmedju

dva efekta - ČTM i jednofotonske apsorpcije. Oba procesa su obrnuto propor-

cionalna jednofotonskom razdešenju i cilj je bio naći tačku kompromisa izmedju

njih. Najbolji rezultat je postignut za 700 MHz gde je izmereno pojačanje kon-

jugovanog snopa od 82. U svim merenjima dvofotonsko razdešenje je podešavano

tako da ponǐsti uticaj AC Štarkovog pomeraja koji se javlja usled delovanja jakog

pumpnog snopa. Jačina efekta AC Štarkovog pomeraja opada sa odmicanjem od

rezonance što se može videti iz manje vrednosti dvofotonskog razdešenje potrebnog

za anuliranje ovog efekta za veće vrednosti jednofotonskog razdešenja.

Zavisnost od temperature, ugla izmedju pumpe i probe i intenziteta pumpe je

takodje istraživana. Povećanje temperature dovodi do povećanja koncetracije atoma

kalijuma i shodno do povećanja unakrsno spregnutnih susceptibinosti odgovornih za

ČTM sa jedne i do povećanja Doplerove širine i jednofotonske apsorpcije sa druge

strane. Zbog ovih efekata veće pojačanje konjugovanog snopa na vǐsim temperatu-

rama nije opažen ali jeste izmereno najveće pojačanje za probni snop koje je iznosilo

63 na temperaturi od 150◦C. Kao i u ostalim alkalnim parama mali ugao izmedju

pumpe i probe je potreban za postizanje najboljeg faznog podudaranja. U slučaju

kalijuma izmereni ugao iznosi 2 mrad. Konačno bili smo u mogućnosti da opazimo



ČTM pri niskim intenzitetima pumpe koje je moguće ostvariti korǐsćenjem konven-

cionalnih diodnih lasera čime se otvara mogućnost istraživanja ovavih fenomena sa

jeftinijim i jednostavnijim tipovima lasera.

Zatim istraživani su optimalne vrednosti experimentalnih parametara koji bi dali

najbilje rezultate usporavanja kratkih gausovskih svetlosnih impulsa u smislu frak-

cionog kašnjenja i frakcionog širenja. Najbolji postignut rezultat je 1.1 za frakciono

kašnjenje uz vrednost frakcionog širenja od 1.2 za talasni impuls dužine τ = 120 ns

i δ = 2 MHz, ∆ = 1 GHz, T = 120oC, Ipump = 200 mW, Iref = 20µW, Θ = 3mrad

gde je vrednost pojačanja probe iznosila 16. Dalja istraživanja su pokazala gotovo

ravnu zavisnost od dvofotonskog razdešenja i intenziteta pumpe što je u kontrastu

sa istraživanjima u natrijumu i rubidijumu.

Takodje ispitali smo nekoliko dužina trajanja Gausovskih svetlosnih impulsa.

Sa smanjenjem vremeske dužine svetlosnog impulsa njegova širina u frekventnom

domenu raste dovodeći do nejednakog usporavanja većeg broja Furijeovih kompo-

nenti i dodatnog širenja svetlosnog impulsa. U tom smislu, optimalna dužina svet-

losnog impulsa sa frakcionim kašnjenjem većim od jedan (uslov potreban za primenu

u optičkim linijama kašnjenja) i mimalnim širenjem je 120 ns.

Uporedjeni su i rezultati usporavanja u kalijumu sa rezultatima postignutim u

natrijumu i rubidijumu i pokazano je da su rezultati u kalijumu bolji ili uporedljivi

pri sličnim eksperimentalnim uslovima.

Ključne reči: Četvorotalasno mešanje, kalijum, spora svetlost

Naučna oblast: Fizika

Oblast istraživanja: Kvantna optika, Nelinearna optika
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1 Introduction

Nonlinear and quantum optics are two closely related and intertwined fields of

physics. The field of study of quantum optics is the interaction of electromagnetic

waves and matter. This interaction is described using the apparatus of quantum

mechanics. Although the quantum nature of light was discovered a century ago

thanks to the pioneering work of Max Planck, Albert Einstein, Arthur Compton

and others, quantum optics is a relatively young scientific discipline which started

developing in the second half of twentieth century. Today research in this field is

very intensive both because of potential applications in different areas of industry

on one side and fundamental insights into quantum mechanical nature of light and

matter on the other.

The field of nonlinear optics studies phenomena which originate from the change

of optical properties of the material caused by incident light. The nonlinear here

stands for the situation in which the change of the optical properties of the medium

scales nonlinearly with the strength of the incident light. For example in the pio-

neering work by Franken et al [1] it was shown that the second harmonic generation

depends quadratically on the strength of the optical field. This work also showed

that in situations where the wavelengths of the electromagnetic fields are close to

the atomic scale of the underlying material medium (i.e. in the case of optical fields)

very large field intensities are needed to achieve nonlinear effects. This fact illus-

trates the crucial role that lasers play in nonlinear optics. In fact the demonstration

of the first working laser by Maiman et al [2] just one year before enabled the second

harmonic generation by Franken. On the other side due to their coherent properties

(among the other desirable qualities) lasers are used as almost the only light source

in quantum optics as well. One could say that the birth of fields of quantum and

nonlinear optics was made possible by the invention of lasers.

In the following decades researchers tried to lower the intensity threshold for

mixing of the optical waves. Taking into account the coherence of laser light and

crystal structure of solid state mediums through phase matching led to longer inter-

action lengths and hence higher efficiencies of the mixing processes [3]. On the other
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side optical mixing near atomic or molecular resonances, especially two-photon reso-

nances have also been proved to enhance nonlinear effects [4]. Unfortunately nonlin-

ear mixing in the vicinity of two-photon resonances was plagued with single-photon

effects like single-photon absorption, phase shift, self-focusing and beam distortion.

A way to mitigate this problem is to coherently excite superpositions of quantum

states of the medium which results in change of its optical proprieties. Several ex-

amples demonstrate the power of coherent excitation: coherent population trapping

([5], [6]) and electromagnetically induced transparency ([7], [8], [9]), resonantly en-

hanced index of refraction ([10]), [11]), lasing without inversion ([12], [13], [14]).

Experimental work presented in this thesis is based on the so called double-Λ scheme.

Theoretical insights by Lukin, Hemmer, Scully and others have shown that it is pos-

sible to achieve very high nonlinear conversion efficiencies by exploiting coherent

superposition in this type of systems without the unwanted single-photon effects

([15], [16]). The main nonlinear effect that occurs in this system is four wave mixing

(FWM) in which four modes of electromagnetic field transfer energy among them

([17]). Lets take a look at the expression for polarization of the material medium

given in the presence of an electric field:

P⃗ = ϵ0(χ
(1)E⃗ + χ(2)E⃗2 + χ(3)E⃗3 + ...) (1)

where χ1,2,3.... are orders of susceptibility tensor ([17]). In general higher order of

susceptibility tensor are responsible for nonlinear effects. Material mediums in which

nonlinear effects occur are called nonlinear mediums and are characterized by the

existence of higher orders of susceptibility tensor. Most common nonlinear mediums

are crystals and alkaline metal vapors. Alkaline metal vapors are centrosymmetric

and isotropic mediums and hence have only odd orders of susceptibility tensor ([17]).

First nonzero higher order is the third order of the susceptibility tensor χ3 which is

responsible for four wave mixing. Alkaline metal atomic structure is ideally suited for

realization of double-Λ scheme. Usually two lower levels are the hyperfine sublevels

of the atomic ground state. The quantum coherence between these two sublevels is

responsible for high values of higher orders of susceptibility tensor which give rise

to nonlinear effects ([15], [16]).
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Numerous features of FWM as well as the effects based on it are of high scientific

importance. Phenomena like optical phase conjugation, amplified reflection and

oscillations ([18], [19]), reflection with conjugation and transmission of the EM field

([20], [20]) were studied both experimentally and theoretically. Many factors may

influence the process of FWM. They range from intensities of laser beams ([21],

[22], [23]) and EM field polarization ([24], [25] ) to Zeeman coherences ([26]), atomic

motion of the nonlinear medium ([27]) and dependency of beam intersection angle

([28]).

Experiments aimed at research of quantum optical and nonlinear effects in al-

kaline metals are usually realised in transparent glass cells which are filled atomic

alkaline metal vapor. Coherent laser radiation with wavelength in narrow range

around a specific atomic transition is traversing the cell and interacting with the

atomic gas ensemble. Four wave mixing in alkaline metals, being a nonlinear effect,

is also done this way. Very often the goal of FWM experiments is to get a very high

efficiency of the FWM process (which is reflected in amplification of the conjugate

beam). Experiments of this kind were performed in different metal vapors and in dif-

ferent experimental settings. In the so called counter-propagating geometry - a case

where the pump and the probe beam propagate in the opposite directions - FWM

efficiency was studied in sodium ([20]) , rubidium ([29]), potassium ([29]), cesium

([21]) and ytterbium ([30]). In the so called co-propagating geometry - a case where

the pump and the probe beam propagate in the same direction - experiments were

performed in sodium ([31]) , rubidium ([32]), cesium ([33]) and potassium ([34]).

Photons created in the FWM process show some very interesting quantum me-

chanical properties. Some of these properties are relative amplitude squeezing and

quantum entanglement ([35], [36]). Relative intensity squeezing is a phenomena that

stems from quantum correlations between photons generated in a nonlinear process.

So if we have two separate beams that consist of mutually correlated photons we

would consequently have two beams with correlated intensities. This results in noise

reduction below the standard quantum limit (SQL) when measuring intensity dif-

ference between these beams. This effect has found its application in high-precision

laser spectroscopy ([37]) and measurements below standard quantum limit ([38],

3



[39]). The nonlinear process of FWM also gives rise to quantum entanglement of

generated photons ([40]) which makes FWM an important source of continuous

entangled light ([41]). Entangled light is important from fundamental perspective

since Bell inequalities can be violated only when the constituents of the quantum

system are entangled ([42], [43]). In this sense the existence of entangled photons

proves the non-local nature of quantum mechanics. On the other side entangled

light has many potential applications. The promising field of quantum information

is founded on entangled particles as a resource for algorithm optimization ([41]). The

very important topic of secure communications is addressed by the field of quantum

cryptography. Quantum cryptography also uses particle entanglement as a mean of

creating absolutely secure information transportation channels ([44]).

For efficient optical communication and for all-optical signal processing in gen-

eral, it is important to have control over optical impulses. This where the notion

of slow light comes in. Slow light is phenomena where the group velocity of the

photons is reduced ([17]). If we are able to control the amount of light slowing we

would achieve the desired optical impulse control. Also the reduction of light speed

is prerequisite for light stoppage and light storage which opens the possibility of

direct storing of information coded into the optical signal, in other words optical

memory ([45]). It was also shown that it is possible to manipulate with delay of

quantum correlations and quantum entanglement using slow light giving more con-

trol over resources needed for quantum computing [46]. Other applications utilizing

slow light are optical delay lines ([47], [48]), slow-light buffers ([48]), Phased Array

Radar Beam Steering ([48]) and many others.

First dramatic reduction of light speed was achieved in ultra cold atomic gas

by Hau and coworkers ([49]). After this success the field opened up to the various

new ways of creating slow light. These techniques have one thing in common - they

are all based on exploiting large dispersion which accompanies narrow transparency

windows. In gaseous mediums slow light was generated using narrow EIT resonances

([50]) in both cold ([47], ([51]) and hot gases ([52], [53]). Double absorption reso-

nances also proved able to generate slow light in gaseous media ([54]). Solid state

mediums could also be used for slow light generation. Double dark states ([55]),
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spectral hole burning ([56]) coherent population oscillations ([57], [58]) and EIT

([59], [60]) have all been successfully used for slow light generation in solids. It is

also interesting to try to achieve slow light directly in the medium that carries opti-

cal communications - namely in optical fibers. Successful slow light experiments in

optical fibers encompass usage of Brillouin scattering ([61]) and stimulated Raman

scattering ([62]).

As mentioned earlier slow light is needed for better control of optical commu-

nications but it is also important that we introduce minimum of signal distortion

and attenuation in the process of light slowing. Unfortunately all of the techniques

mentioned so far introduce signal attenuation through absorption. In order to tackle

this problem researchers started studying light amplifying mediums ([61], [63], [64]).

But light amplification comes with a price of introducing quantum noise in the sig-

nal which is an unwanted effect in quantum information applications ([65], [66]).

Recently candidates to address both the problem of absorption and quantum noise

introduction emerged in form of mediums suitable for double-Λ scheme implemen-

tation ([15], [16], [67], [68], [69]). Initial proposal by Lukin et al [16] suggested that

it is possible to achieve two-photon resonance and have large nonlinearities associ-

ated with it while having no absorption through the effect of EIT. But experiments

showed that EIT effect in hot alkaline gasses was plagued with effects like finite

transit time of the atoms in the laser beams, Doppler broadening, and the existence

of hyperfine sublevels out of the double-Λ that could also be excited. These all led to

the decoherence between ground state sublevels that resulted in residual absorption

and introduction of quantum noise. The quantum noise introduction manifested

through low levels of squeezing in this type of scheme ([70]). In order to mitigate

this unwanted effects researchers reduced the absorption by moving away from the

resonance. The lower off-resonant nonlinear efficiencies were compensated with us-

age of high laser powers. These changes resulted in high levels of relative intensity

squeezing, quantum correlations and entanglement ([32], [71], [72], [73], [40]). It

was also shown that the spectral widths of FWM resonances obtained are narrow

enough to produce substantial slowing of optical pulses ([69], [74], [75]).

Before the start of our work on potassium we’ve conducted a deep search through

5



the literature and concluded that potassium hasn’t been used in aforementioned co-

propagating double-Λ off-resonant setting. Apart from that potassium is interesting

because it has the smallest hyperfine splitting of the ground state among alkali

metals (taking into account only stable isotopes) [76]. Theoretical model developed

by Turnbull et al [77] suggest that smaller hyperfine splitting of the ground state

produces higher gains of probe and conjugate beams in process of FWM. Higher

gains lead to increasing the slowing of light pulses [74] and to higher amount of

squeezing [78]. All of the above considerations have motivated us to start research

of FWM and FWM related phenomena in hot potassium vapor. Concretely the aim

of this thesis is two-fold:

• Observing non-degenerate FWM in hoot potassium vapor in co-propagating

geometry

• Observing of slowed light pulses created in the FWM process in hot potassium

vapor

We’ve chosen these aims because of numerous possible contributions. First, since

FWM hasn’t been observed in this setting, is to experimentally verify that this is

possible. Consequently slowing of light pulses in these setting hasn’t been done in

potassium vapor so experimentally observing this effect would also be important.

Besides the possible pioneering work in new nonlinear medium potassium is also

interesting because of aforementioned low hyperfine splitting of its ground state.

Low hyperfine splitting gives rise to high value of the third order of the susceptibility

tensor χ(3) [16]. High value of χ(3) is the fundamental reason of high gains in the

process of FWM shown by Turnbull in [77]. This fact is important for several

reasons. Since the index of refraction of a medium is proportional to the real part of

susceptibility of the medium [17] high values of χ(3) would lead to big dispersion of

the optical medium (in the narrow frequency window) and to large reducing of light

speed [48]. The bigger the light speed reduction achieved the better it is for slow

light applications that we’ve already discussed. Low hyperfine splitting of potassium

ground state indicates the existence of high χ3 and indicates that it is possible to

achieve the biggest reduction of light speed among all alkali metals. High χ3 also

6



indicates that large gains in the process of FWM are possible which would lead to the

bigger amounts of relative intensity squeezing and quantum entanglement between

the probe and conjugate beam. This could improve the effects, techniques and

applications based on squeezing and entanglement and would distinguish potassium

vapor as one of the best sources of squeezed and entangled light. Regardless of the

amount of relative intensity squeezing achieved in hot potassium vapor the methods

based on this phenomena, as already mentioned high-precision spectroscopy and

measurements below standard quantum limit, would find new application on new

wavelengths - namely D1 and D2 lines of potassium (770nm and 766nm respectively

for 39K [76] ).

In the end the this dissertation has the importance for the Quantum Optics

Laboratory of the Photonics Centre at Institute of Physics in Belgrade. It presents

the widening of the field of research of the Laboratory in the direction of nonlinear

mediums, precision measurements and high power lasers.
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2 Theoretical foundations of wave mixing

2.1 Wave equation in nonlinear media

Following considerations are based on [17]. Electromagnetic phenomena are de-

scribed by Maxwell’s equations:

∇ · D⃗ = ρ (2)

∇ · B⃗ = 0 (3)

∇× E⃗ = −∂B⃗
∂t

(4)

∇× H⃗ = −∂D⃗
∂t

+ J⃗ (5)

where D⃗ is vector of electric displacement, B⃗ is vector of magnetic induction, E⃗ is

vector of electric field, J⃗ is vector of electric current and ρ is density of free electric

charge.

We will assume that there are no free charges or currents so that

ρ = 0 (6)

J⃗ = 0 (7)

and that the material is nonmagnetic so

B⃗ = µ0H⃗ (8)

The medium may be nonlinear which expressed through relation between electric

displacement and magnetic induction:

D⃗ = ϵ0E⃗ + P⃗ (9)

Using vector transformations and equations (4), (7) and (8) we arrive at general

form of wave equation in nonlinear optics:

∇×∇× E⃗ +
1

c2
∂2

∂t2
E⃗ = − 1

ϵ0c2
∂2

∂t2
P⃗ (10)

The first term on the left-hand side of equation (11) can be further transformed

using the vector identity ∇×∇× E⃗ = ∇(∇· E⃗)−∇2E⃗. First term of the right hand

8



side of equation (12) can usually be omitted. For example in the case of transverse,

infinite plane waves ∇ · E⃗ vanishes identically. In other cases, if the rotating wave

approximation is valid, it can often be shown that this term is small. Based on

this considerations we will assume that contribution from the ∇(∇· E⃗) is negligible.

Now we can rewrite equation (11) in the following form:

∇2E⃗ − 1

c2
∂2

∂t2
E⃗ =

1

ϵ0c2
∂2

∂t2
P⃗ (11)

or equivalently (using equation (8)):

∇2E⃗ − 1

c2
∂2

∂t2
D⃗ = 0 (12)

Polarization P⃗ is usually split into linear and nonlinear part:

P⃗ = P⃗ (1) + P⃗NL (13)

where linear part P⃗ (1) depends linearly on electric field E⃗. Displacement field D⃗ can

also be split into linear and nonlinear part

D⃗ = D⃗(1) + P⃗NL (14)

with linear part equal to:

D⃗(1) = ϵ0E⃗ + P⃗ (1) (15)

Now we can rewrite equation (13) in terms of linear part of displacement field D⃗(1):

∇2E⃗ − 1

ϵ0c2
∂2

∂t2
D⃗(1) =

1

ϵ0c2
∂2

∂t2
P⃗NL (16)

Now lets consider lossless and dispersionless medium. In this case linear part of

displacement field D⃗1 and electric field E⃗ are connected through dielectric tensor

ϵ(1) which is real and frequency independent:

D⃗(1) = ϵ0ϵ
(1) · E⃗ (17)

if in addition the given medium is isotropic equation (19) reduces to

D⃗(1) = ϵ0ϵ
(1) · E⃗ (18)

9



where ϵ(1) is a scalar. So for lossless, dispersionless, isotropic medium the wave

equation reads:

−∇2E⃗ +
ϵ(1)

c2
∂2

∂t2
E⃗ = − 1

ϵ0c2
∂2

∂t2
P⃗NL (19)

which is a inhomogeneous wave equation with P⃗NL as a source term. If the source

term is absent free waves propagating with velocity c/n are a possible solution. Here

n is the linear index of refraction where n2 = ϵ(1).

In the case of dispersive medium it is needed to examine every field frequency

component independently. To do this we first express electric field E⃗ , linear part

of the displacement field D⃗(1) and nonlinear part of polarization P⃗NL as the sums

of its frequency components:

E⃗(r⃗, t) =
∑
n

E⃗n(r⃗, t) (20)

D⃗(1)(r⃗, t) =
∑
n

D⃗(1)
n (r⃗, t) (21)

P⃗NL(r⃗, t) =
∑
n

P⃗NL
n (r⃗, t) (22)

where the summation is over positive frequencies. Frequency components are rep-

resented as:

E⃗n(r⃗, t) = Ene−iωnt + c.c (23)

D⃗(1)
n (r⃗, t) = D(1)

n e−iωnt + c.c (24)

P⃗NL
n (r⃗, t) = PNL

n e−iωnt + c.c (25)

where En, D(1)
n and PNL

n are complex amplitudes of E⃗n, D⃗
(1)
n and P⃗NL

n respectively.

In non-dissipative medium the dependence between D⃗
(1)
n and E⃗n can be expressed

as:

D⃗(1)
n (r⃗, t) = ϵ0ϵ

1(ωn) · E⃗n(r⃗, t) (26)

where ϵ1(ωn) is real, frequency-dependent dielectric tensor. Rearranging equation

(19) using relations (20 - 25) we obtain wave equation for the frequency component

of the field in the non-dissipative medium:

∇2E⃗n −
ϵ(1)(ωn)

c2
∂2

∂t2
E⃗n =

1

ϵ0c2
∂2

∂t2
P⃗NL
n (27)

10



In the case of dissipative medium dielectric tensor becomes complex and relates

complex fields amplitudes (defined in (23),(24) and (25)) in the following manner:

D(1)
n (r⃗) = ϵ0ϵ

(1)(ωn) · En(r⃗) (28)

Using this relation along with equation (21), and relations (22), (23) and (24) we

can rewrite equation (18) in the following form:

∇2En(r⃗) +
ω2
n

c2
ϵ1(ωn) · En = − ω2

n

ϵ0c2
∂2

∂t2
PNL

n (29)

This equation is the wave equation for the frequency components of the field in the

general case of dissipative, nonlinear medium.

2.2 Calculation of Nonlinear Optical Susceptibilities - Den-

sity Matrix approach

Nonlinear optical susceptibilities are characteristic of a given medium. They de-

pend on the underlying atomic and molecular structure of the medium. Quantum

mechanical apparatus enables us to find functional relationships between nonlinear

susceptibilities of a medium and its parameters such as dipole transition moments

and atomic energy levels.

From quantum mechanical perspective the problem of calculating nonlinear sus-

ceptibilities could be addressed using two approaches:

• Schrödinger equation approach

• Density matrix approach

Although the Schrödinger equation approach is simpler, it can only be used in cases

of nonresonant response of atomic or molecular systems ([17]). In other cases where

excitations or relaxations of atoms have to be dealt with or where the collisional or

time-of-flight broadening of the atomic resonances have to be accounted for density

matrix approach gives much better results ([17], [79]) . Because of these reasons

we will treat the problem of finding nonlinear susceptibilities of a given material by

using density matrix approach. Following derivation is based on [79].
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The problem of finding nonlinear optical susceptibilities will be treated semiclas-

sically which means that given medium will be treated quantum mechanically and

the electromagnetic field with whom the medium interacts will be treated classically.

Let ψ be the wave function that describes our medium. The density matrix operator

is defined as ensemble average of the ket and bra state vectors:

ρ = |ψ⟩⟨ψ| (30)

The ensemble average of quantity A is:

⟨A⟩ = ⟨ψ|A|ψ⟩ = Tr(ρA) (31)

Using Schrödinger equation and definition (30) we can derive equation of motion for

density matrix operator ρ (Liouville equation):

∂ρ

∂t
=

1

iℏ
[H, ρ] (32)

where H is the total Hamiltonian of the system. Hamiltonian is usually split into

three parts, namely the unperturbed, interaction and random Hamiltonian:

H = H0 +Hint +Hrandom (33)

Hamiltonian H0 describes the unperturbed system with eigenstates |n⟩ and corre-

sponding eigenenergies En, so H0|n⟩ = En|n⟩ holds. The interaction Hamiltonian

Hint describes the interaction between the material system and electromagnetic field.

In the dipole approximation [ref] this Hamiltonian is given by:

Hint = −er⃗ · E⃗ (34)

where e is the electron charge (e = 1.60217662 × 10−19C), r⃗ is the position of

the electron and E⃗ is the electromagnetic field. We should mention that here we

are taking only the electronic contribution to nonlinear susceptibilities while the

possible ionic contributions are left out. The random Hamiltonian Hrandom describes

mechanisms of interaction of material system with thermal reservoir; in other words

it describes relaxations of the system. Using decomposition (35) we can rewrite

equation (34) as:
∂ρ

∂t
=

1

iℏ
[H +Hint, ρ] +

(
∂ρ

∂t

)
relax

(35)

12



with: (
∂ρ

∂t

)
relax

=
1

iℏ
[Hrandom, ρ] (36)

We can represent the wave function of our material system ψ in the basis of

eigenstates of unperturbed Hamiltonian H0 as ψ =
∑

n an|n⟩ . Now it is possible

to gain an insight into the physical meaning of the matrix elements of the density

matrix operator. Diagonal matrix elements are calculated as:

ρnn = ⟨n|ρ|n⟩ = |an|2 (37)

and they represent the population of the system in the state |n⟩. Off-diagonal

elements are calculated as:

ρnm = ⟨n|ρ|m⟩ = ana∗m (38)

These off-diagonal elements give information about the amount of coherent admix-

ture of the states |n⟩ and |m⟩ present in the system. If the relative phase between

states |n⟩ and |m⟩ fluctuates randomly the ensemble average will yield ρnm = 0. For

example systems which are in thermal equilibrium will have ρnm = 0 for n ̸= m.

In order to get a better understanding of (∂ρ/∂t)relax term we should take a

deeper look to the relaxation processes. The population relaxation is a result of

transitions between states induced by the interaction with the thermal reservoir.

Let denote the thermally induced transition rate from state |n⟩ to state |m⟩ as

Qn→m. We can then write the equation for the relaxation rate of the population of

state |n⟩ as: (
∂ρnn
∂t

)
relax

=
∑
m

(Qm→nρmm −Qn→mρnn) (39)

We can see that there are two contributions to the relaxation rate of the population

of the state |n⟩. One is positive and it represents the net contribution from relaxation

channels of all the states |m⟩ to the state |n⟩. Other is negative and it represents

the sum of all possible relaxation channels from the state |n⟩ to other states |m⟩. If

the system is in the thermal equilibrium all populations have constant values so we

have:
∂ρ

(0)
nm

∂t
=

∑
m

(Qm→nρ
(0)
mm −Qn→mρ

(0)
nn) = 0 (40)
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Combining equations (41) and (42) we get:

∂

∂t
[(ρnn)relax − ρ(0)nn ] =

∑
m

(Qm→n(ρmm − ρ(0)mm)−Qn→m(ρnn − ρ(0)nn)) (41)

Equations for relaxation of off-diagonal elements are more challenging to derive

([80]). Fortunately in most cases we can assume that the phase coherence between

energy levels decays exponentially, so we can write (for n ̸= n′):(
∂ρnn′

∂t

)
relax

= −Γnn′ρnn′ (42)

The constant of proportionality Γnn′ is symmetric, Γnn′ = Γn′n. Its inverse Γ−1
nn′ =

(T2)nn′ is characteristic relaxation time between the states |n⟩ and |n′⟩ and is often

referred to as transverse relaxation time. Population relaxation time is referred to

as longitudinal relaxation time and it is denoted as (T1)n. Longitudinal relaxation

time is often approximated by:

∂

∂t

(
ρnn − ρ(0)nn

)
relax

= −(T1)
−1
n

(
(ρnn)− ρ(0)nn

)
(43)

In order to solve the wave equation in particular medium it is needed to calculate

the ensemble average of polarization P⃗ in that medium, i.e. it is necessary to solve:

⟨P⃗ ⟩ = ⟨ψ|P⃗ |ψ⟩ = Tr (ρP⃗ ) (44)

In principle if unperturbed HamiltonianH0, interaction HamiltonianHint and (∂ρ/∂t)relax

are known than equation of motion for density matrix operator (32) together with

(44) completely describe the response of material medium to incoming field E⃗. The

problem is that in general it is not possible to combine equations (32) and (44)

into single equation of motion for ⟨P⃗ ⟩. Here we will only consider the steady-state

response of the medium where ⟨P⃗ ⟩ is expandable into power series in E⃗ and use the

perturbation theory in order to solve for P⃗ .

First we denote the density matrix operator at thermal equilibrium as ρ(0). We

also assume that there is no permanent polarization of the medium. Then we can

write density matrix operator and polarization of the medium using perturbation

expansion:

ρ = ρ(0) + ρ(1) + ρ(2) + ... (45)

⟨P⃗ ⟩ = ⟨P⃗ (1)⟩+ ⟨P⃗ (2)⟩+ ... (46)
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where

⟨P⃗ (n)⟩ = Tr (ρ(n)P⃗ ) (47)

and

⟨P⃗ (0)⟩ = 0 (48)

because of the aforementioned absence of permanent polarization of the medium.

We will also regard interaction Hamiltonian Hint as the first-order perturbation. If

we insert expansions (43) and (44) back to the equation (33) and group terms of the

same order in Hint we will obtain:

∂ρ(1)

∂t
=

1

iℏ
[[
H0, ρ

(1)
]
+
[
Hint, ρ

(0)
]]

+

(
∂ρ(1)

∂t

)
relax

(49)

∂ρ(2)

∂t
=

1

iℏ
[[
H0, ρ

(2)
]
+
[
Hint, ρ

(1)
]]

+

(
∂ρ(2)

∂t

)
relax

(50)

and so on.

Here we are interested in how our material system responds to a field that can

be represented as a sum of its spectral components i.e. to the field that can be

represented as E⃗ =
∑

n Ene−iωnt (equations (20) and (23)). Since the interaction

Hamiltonian is proportional to the applied electric field (equation (34)) we can also

write it as a sum of its frequency components:

Hint =
∑
i

Hint(ωi) (51)

where Hint(ωi) ∼ Ene−iωit. The density matrix operator can now also be expanded

into a sum of its frequency components:

ρ(n) =
∑
j

ρ(n)(ωj) (52)

And we will also have:
∂ρ(n)(ωj)

∂t
= −iωjρ

(n)(ωj) (53)

Now we are able to solve equations (49) and (50) for the frequency components of
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the density matrix operator:

ρ
(1)
nn′(ωj) =

(Hint(ωj))nn′

ℏ(ωj − ωnn′ + iΓnn′)

(
ρ
(0)
n′n′ − ρ0nn

)
(54)

ρ
(2)
nn′(ωj + ωk) =

[
Hint(ωj), ρ

(1)(ωk)
]
nn′ +

[
Hint(ωk), ρ

(2)ωj

]
nn′

ℏ(ωj + ωk − ωnn′ + iΓnn′)

=
1

ℏ(ωj + ωk − ωnn′ + iΓnn′)
×∑

n′′

((Hint(ωj))nn′′ ρ
(1)
n′′n′(ωk)− ρ

(1)
nn′′(ωk) (Hint(ωj))n′′n′ +

(Hint(ωk))nn′′ ρ
(1)
n′′n′(ωj)− ρ

(1)
nn′′(ωj) (Hint(ωk))n′′n′)

(55)

Here we have used the shorthand notation (H(ωi)int′)nn′ for the matrix elements of

the interaction Hamiltonian, (H(ωi)int′)nn′ = ⟨n|H(ωi)int′ |n′⟩.

Whenever diagonal elements ρ
(n)
mm(0) appear in the derivation, further approxi-

mation on (∂ρmm/∂t)relax in (42) is often necessary to find a closed form solution.

We also note that the expression for ρ
(2)
nn′(ωj + ωk) in (55) is valid even for n = n′

as long as ωj + ωk ̸= 0 since the term (∂ρ
(2)
nn/∂t)relax can then be neglected in the

calculation.

Now we can derive full expressions for nonlinear polarizations ⟨P⃗ (n)⟩ and the

nonlinear susceptibilities ⟨χ(n)⟩. Using (47) and (55) with Hint = −er⃗ · E⃗ and

P⃗ = −Ner⃗ we derive first-order and second-order susceptibilities due to electronic

contribution (expressions are given in Cartesian coordinates):

χ
(1)
ij (ωp) =

P
(1)
ij (ωp)

Ej(ωp)
=

N

ϵ0ℏ
∑
n

[
µi
anµ

j
an

ωna − ωp − iΓna

] + [
µi
anµ

j
na

ωan + ωp + iΓna

] (56)

χ
(2)
ijk(ωp + ωq, ωq, ωp) =

N

2ϵ0ℏ2
∑
lmn

ρ
(0)
ll

(
µi
lnµ

j
nmµ

k
lm

[ωnl − ωp − ωq − iΓnl][ωml − ωp − iΓml]
+

µi
lnµ

k
nmµ

j
lm

[ωnl − ωp − ωq − iΓnl][ωml − ωq − iΓml]
+

µk
lnµ

i
nmµ

j
lm

[ωmn − ωp − ωq − iΓmn][ωnl + ωp + iΓnl]
+

µj
lnµ

i
nmµ

k
lm

[ωmn − ωp − ωq − iΓnm][ωnl + ωq + iΓnl]
+

µj
lnµ

i
nmµ

k
lm

[ωnm + ωp + ωq − iΓnl][ωml − ωp − iΓml]
+

µk
lnµ

i
nmµ

j
lm

[ωnm + ωp + ωq + iΓnm][ωml − ωp − iΓml]
+

µk
lnµ

j
nmµ

i
lm

[ωml + ωp + ωq + iΓml][ωnl + ωp + iΓnl]
+

µj
lnµ

k
nmµ

i
lm

[ωml + ωp + ωq + iΓml][ωnl + ωq + iΓnl]
)

(57)
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Expression for third-order susceptibility has total of 48 terms. In order to write

this expression in condensed manner we will make use of permutation operator PI .

Meaning of this operator is that everything to the right of it is to be averaged

over all possible permutations of the input frequencies ωp, ωq, and ωr , with the

Cartesian indices h, i, j permuted simultaneously. Next, we rewrite this equation as

eight separate terms by changing the dummy indices so that l is always the index

ρ
(0)
ii . We also require that only positive resonance frequencies appear if the energies

are ordered so that Eν > En > Em > El , and we arrange the matrix elements so

that they appear in “natural” order, l → m→ n→ ν (reading right to left):

χ
(3)
kjih(ωp + ωq + ωr, ωr, ωq, ωp) =

N

ϵ0ℏ3
PI

∑
νnml

ρ
(0)
ll

(
µk
lνµ

j
νnµ

i
nmµ

h
ml

[ωνl − ωp − ωq − ωr − iΓνl][ωnl − ωp − ωq − Γnl][ωml − ωp − iΓml]
+

µh
lνµ

h
νnµ

j
nmµ

i
ml

[ωnν − ωp − ωq − ωr − iΓnν ][ωmν − ωp − ωq − Γmν ][ωνl + ωp + iΓνl]
+

µi
lνµ

k
νnµ

j
nmµ

h
ml

[ωnν − ωp − ωq − ωr − iΓnν ][ωνm + ωp + ωq + Γnl][ωml − ωp − iΓml]
+

µh
lνµ

i
νnµ

k
nmµ

j
ml

[ωmn − ωp − ωq − ωr − iΓmn][ωnl + ωp + ωq + Γnl][ωνl + ωp + iΓνl]
+

µj
lνµ

k
νnµ

i
nmµ

h
ml

[ωνn + ωp + ωq + ωr + iΓmn][ωnl − ωp − ωq − Γnl][ωml − ωp + iΓml]
+

µh
lνµ

j
νnµ

k
nmµ

i
ml

[ωnm + ωp + ωq + ωr + iΓnm][ωmν − ωp − ωq − Γmν ][ωνlωp + iΓνl]
+

µi
lνµ

j
νnµ

k
nmµ

h
ml

[ωnm + ωp + ωq + ωr + iΓnm][ωmν + ωp + ωq + Γmν ][ωml − ωp + iΓml]
+

µh
lνµ

i
νnµ

j
nmµ

k
ml

[ωml + ωp + ωq + ωr + iΓml][ωnl + ωp + ωq + Γnl][ωνl + ωp + iΓνl]
).

(58)

2.3 Nonlinear interactions between modes of optical field -

coupled wave equations

In the last section it was shown how specific (nonlinear) mediums give rise to non-

linear interactions. In this section it will be shown how different modes of optical

field can be coupled through this type of interaction. In order to emphasize the

basic concepts of the coupling between the modes of the optical field, the inter-

action between two modes, namely sum-frequency generation, will be shown first.
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We consider second-order, lossless nonlinear optical medium and two collimated,

monochromatic, continuous-wave input beams. Incident beams fall on nonlinear

medium at normal incidence. The optical field in the medium is:

E⃗(t) = E⃗1e
−iω1t + E⃗2e

−iω2t + c.c. (59)

From equation (1) we have:

P⃗ (2)(t) = ϵ0χ
(2)E⃗(t)2 (60)

Substituting equation (59) into (60) we get:

P⃗ (2)(t) = ϵ0χ
(2)(E⃗2

1e
−2iω1t + E⃗2

2e
−2iω2t + 2E⃗1E⃗2e

−i(ω1+ω2)t + 2E⃗1E⃗
∗
2e

−i(ω1−ω2)t + c.c.)

+2ϵ0χ
(2)(E⃗1E⃗

∗
1 + E⃗2E⃗

∗
2)

We can always represent polarization as a sum of its frequency components :

P⃗ (2) =
∑
n

P(ωn)e
−iωnt

Then different frequency components of nonlinear polarization can be expressed as:

P(2ω1) = ϵ0χ
(2)E⃗2

1 (SHG) (61)

P(2ω2) = ϵ0χ
(2)E⃗2

2 (SHG) (62)

P(ω1 + ω2) = ϵ0χ
(2)E⃗1E⃗2 (SFG) (63)

P(ω1 − ω2) = ϵ0χ
(2)E⃗1E⃗

∗
2 (DFG) (64)

P(0) = ϵ0χ
(2)(E⃗1E⃗

∗
1 + E⃗2E⃗

∗
2) (OR) (65)

All terms in the second order nonlinear polarization expression represent a dis-

tinct physical phenomena. These are as second-harmonic generation (SHG), sum-

frequence generation (SFG), difference-frequency generation (DFG), and optical rec-

tification (OR).

We will consider the case of sum-frequency generation more closely (figure 1).

Sum-frequency generation is a process in which two fields with frequencies ω1 and

ω2 mix giving rise to the new field at frequency ω3 = ω1 + ω2. The wave equation

(29) holds for every frequency field component. Here we don’t have a source term

so in the case of plane wave with frequency ω3 we have:
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E⃗3(z, t) = A3e
i(k3−ω3t) + c.c. (66)

where k3 stands for:

k3 =
n3ω3

c
, n2

3 = ϵ(1)(ω3)

The amplitude of the wave A3 is constant. In the case where nonlinear term is small

the solution of wave equation for this case will still be in the form (66) except that

A3 will become a slowly varying function of z.

Figure 1: Sum-frequency generation - Two fields with frequencies ω1 and ω2 mix inside

the χ(2) nonlinear medium giving rise to the field with frequency ω3. Picture taken from

[17]

The polarization at frequency ω3 is given by:

P⃗3 = P3e
−iω3 + c.c. (67)

while from (63) we have:

P3 = ϵ0χ
(2)E⃗1E⃗2

The input fields E⃗1 and E⃗2 are given in the following form:

E⃗i(z, t) = Aie
−i(ωit−kiz) + c.c where i = 1, 2

We can then represent the amplitude of nonlinear polarization as:

P = ϵ0χ
(2)A1A2e

i(k1+k2)z ≡ p3e
i(k1+k2)z (68)
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After some algebraic transformations and applying slowly varying envelope approx-

imation we arrive at

dA3

dz
=
iχ(2)ω

(2)
3

2k3c2
A1A2e

i∆kz (69)

where:

∆k = k1 + k2 − k3 (70)

The newly introduced quantity ∆k is called wavevector (or momentum) mismatch.

In similar manner we can derive equations for amplitudes A1 and A2 of the input

fields with frequencies ω1 and ω2, respectively:

dA1

dz
=
iχ(2)ω

(2)
1

2k1c2
A3A

∗
2e

i∆kz (71)

dA2

dz
=
iχ(2)ω

(2)
2

2k2c2
A3A

∗
1e

i∆kz (72)

Equations (69), (70) and (71) are called coupled-amplitude equations. These equa-

tions demonstrate how the change of amplitude of output field on frequency ω3

depends on amplitude of input fields on frequencies ω1 and ω2. Vice-versa change

of amplitudes of input fields also depends on the amplitude of the other input field

and the output field. In other words these fields are coupled. The coupling is made

possible by the nonlinear polarization of the medium. The magnitude of the non-

linearity of the medium, expressed through coefficient χ, determines the strength of

coupling between the fields.

If we examine coupled-amplitude equations more closely we would notice that

apart from nonlinear susceptibility χ the strength of coupling between the mixing

fields is also determined by the factor ei∆kz. This factor introduces the influence of

phase matching, which we discuss in the next section.

2.4 Phase matching

The concept of phase matching is of great importance for each type and order of

wave mixing phenomena. Let’s examine the the notion pf phase matching on sum-

frequency generation example.
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In the case of small energy transfer from mode of the field at frequency ω1 and

ω2 to sum-frequency ω3 = ω1 +ω2 amplitudes A1 and A2 from equation (69) can be

regarded as constants. If the condition :

∆k = 0 (73)

is fulfilled, then the amplitude A3 of the sum-frequency wave will rise linearly with

z, and the field intensity will rise quadratically with z. The condition (73) is known

as perfect phase matching. In cases when this condition holds, the newly generated

wave with frequency ω3 = ω1+ω2 extracts maximum energy from the incident waves

at frequencies ω1 and ω2. This is possible because the generated wave and nonlin-

ear polarization have constant phase difference which is favorable to this maximum

energy transfer. Namely if we think of the nonlinear medium as consisting of micro-

scopic atomic dipoles then perfect phase matching represents the situation in which

these dipoles have perfect constant phase difference between them so the emitted

field from each dipole coherently adds to the EM wave of frequency ω3. Conse-

quently the power of the field radiated scales with the number of atomic dipoles

squared.

In situations when (73) isn’t fulfilled the amount of mixing is smaller and conse-

quently the intensity of output field is lower than in case of perfect phase matching.

To get the amplitude of the output field in this case we integrate equation (73) from

z = 0 to z = L , where L represents the length of the nonlinear medium in the z

direction:

A3(L) =
iχ(2)ω2

3A1A2

2k3c2

∫ L

0

ei∆kzdz =
iχ(2)ω2

3A1A2

2k3c2

(
ei∆kL − 1

i∆k

)
(74)

If we average Poyniting vector over time we will get:

Ii = 2niϵ0c|Ai|2 i = 1, 2, 3 (75)

so for intensity of the output field we have:

I3 =
n3ϵ0(χ

(2))2ω4
3|A1|2|A2|2

8k23c
3

∣∣∣∣ei∆kL − 1

∆k

∣∣∣∣2 (76)

After some transformations we arrive at the expression for the intensity of the

output field I3 :

I3 =
(χ)2ω2

3I1I2
8n1n2n3ϵ0c2

L2 sinc2
(
∆kL

2

)
(77)
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We can see that the effect of phase matching on the intensity of the output field

I3 is included in the factor sinc2 (∆kL/2). This factor is known as phase mismatch

factor (figure 2).

Figure 2: Phase mismatch factor - Influence of phase matching on the intensity of the

output signal is given by sinc2 (∆kL/2)

We observe that the efficiency of the wave mixing process generally decreases

with |∆k|L with some oscillations occurring. Oscillations can happen because the

sum-frequency wave can go out of phase with nonlinear polarization of the medium

which leads to energy transfer from sum-frequency wave back to incident waves of

frequencies ω1 and ω2 (see equation (69)).

2.5 Four wave mixing and double Λ scheme

Usually magnitudes of nonlinear coefficients are very small ([17]), and hence the

efficiencies on non-linear processes are small as well. Here we will examine a specific

scheme, called the double Λ scheme, in which substantial enhancement of nonlin-

earity is possible (even without large initial coherence) ([16]). This scheme consist

of four atomic levels which are coupled by four optical fields whose frequencies are

tuned in the vicinity of these levels (figure 3). The transition between levels |a⟩ and

|b⟩ is dipole-forbidden.
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Figure 3: Λ scheme - Atomic levels are represented as |a⟩, |b⟩, |c⟩ and |d⟩ and optical fields

coupling the atomic levels as Ω1, Ω2, Ω3 and Ω4

We will consider the case of two strong fields with frequencies ω2 and ω3 with

respective Rabi frequencies Ω2 and Ω3 and two weak fields with frequencies ω1 and

ω4 with respective Rabi frequencies Ω1 and Ω4. Essentially two strong fields interfere

and create a running wave with wave vector k = k3 − k2. This running wave acts

as a periodic grating from which a wave ω1 can scatter and transfer energy to the

wave at frequency ω4. So strong fields ω2 and ω3 can be seen as mediators of the

conversion from ω1 to ω4.

In our initial analysis we will make several assumptions. First all the fields

examined are continuous waves. Second we assume that coherence on the dipole-

forbidden transition |a⟩ → |b⟩ is long-lived. Third we assume that that both of

the strong fields are perfectly tuned to the corresponding single-photon transitions

(i.e. detuning is zero). Weak fields are detuned from their respective single-photon

transitions by amount of ∆.

For describing this system we will use wave function approach. The wave function
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of the system can be written in the following form:

Ψ = a |a⟩+ b |b⟩+ c |c⟩+ d |d⟩ (78)

where |a⟩ , |b⟩ , |c⟩ and |d⟩ are the atomic level eigenfunctions (figure 3). The Hamil-

tonian of this system is:

H = ℏωa |a⟩⟨a|+ ℏωb |b⟩⟨b|+ ℏωc |c⟩⟨c|+ ℏωd |d⟩⟨d|

−ℏ(Ω1cos(ν1t)(|b⟩⟨d| eiϕ1 + |d⟩⟨b| e−iϕ1))

−ℏ(Ω2cos(ν2t)(|a⟩⟨c| eiϕ2 + |c⟩⟨a| e−iϕ2)

−ℏ(Ω3cos(ν3t)(|b⟩⟨c| eiϕ3 + |c⟩⟨b| e−iϕ3))

−ℏ(Ω4cos(ν4t)(|a⟩⟨d| eiϕ4 + |d⟩⟨a| e−iϕ4))

(79)

where

ν1 = ωd − ωb +∆

ν2 = ωc − ωa

ν3 = ωc − ωb

ν4 = ωd − ωa +∆

We see that Hamiltonian consists of two parts, first which gives the energies of

atomic levels and second which describes the electromagnetic coupling between the

atomic levels.

Now we can solve the Schrödinger equation (dot above symbol stands for time

derivative):

˙|Ψ⟩ = − i

ℏ
ΨH
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substituting Ψ and H from (78) and (79) gives:

ȧ |a⟩+ ḃ |b⟩+ ċ |c⟩+ ḋ |d⟩ =

− i

ℏ
[
(ℏωa |a⟩ − ℏΩ2cos(ν2t)e

−iϕ2 |c⟩ − ℏΩ4cos(ν4t)e
−iϕ4 |d⟩) ȧ

]
+

− i

ℏ

[
(ℏωb |b⟩ − ℏΩ1cos(ν1t)e

−iϕ1 |d⟩ − ℏΩ3cos(ν3t)e
−iϕ3 |c⟩) ḃ

]
+

− i

ℏ

[
(ℏωc |d⟩ − ℏΩ∗

4cos(ν4t)e
iϕ4 |a⟩ − ℏΩ∗

1cos(ν1t)e
iϕ1 |b⟩) ḋ

]
+

− i

ℏ
[
(ℏωc |c⟩ − ℏΩ∗

2cos(ν2t)e
iϕ2 |a⟩ − ℏΩ∗

3cos(ν3t)e
iϕ3 |b⟩) ċ

]
(80)

After multiplying both sides of (80) with ⟨a| , ⟨b| , ⟨c| and ⟨d| from the left we get

four following equations:

ȧ =− iωaa+ iΩ∗
4cos(ν4t)e

iϕ4d+ iΩ∗
2cos(ν2t)e

iϕ2c

ḃ =− iωbb+ iΩ∗
1cos(ν1t)e

iϕ1d+ iΩ∗
3cos(ν3t)e

iϕ3c

ċ =− iωcc+ iΩ2cos(ν2t)e
−iϕ2a+ iΩ3cos(ν3t)e

−iϕ3b− γc

ḋ =− iωdd+ iΩ4cos(ν4t)e
−iϕ4a+ iΩ1cos(ν1t)e

−iϕ1b− γd

In the above equations for excited levels |c⟩ and |d⟩ we’ve added phenomenologically

the decay constant γ. If we make following substitutions:

a =ae−iωat

b =be−iωbt

c =ce−iωct

d =de−i(ωd+∆)t
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We will get following set of equations for atomic levels:

ȧ =iΩ∗
2d+ iΩ∗

4c (81)

ḃ =iΩ∗
3d+ iΩ∗

1c (82)

ċ =− γc+ iΩ2a+ iΩ3b (83)

ḋ =− (γ − i∆)d+ iΩ4a+ iΩ1b (84)

In the case of equal values of the Rabi frequencies of driving fields , |Ω2| ∼ |Ω3| ∼

Ω\
√
2 the coherence between |a⟩ and |b⟩ is maximal. Solution of equation (80) in

steady state is

d = i
Ω4a− Ω1b

γ − i∆
(85)

We can also calculate the probability amplitudes of levels |a⟩ and |b⟩ in the case of

maximal coherence. Also polarization of the levels coupled by the weak fields are

proportional to the corresponding off-diagonal matrix elements ([17]). Putting these

together gives us the expressions for the polarization of weak-field coupled levels:

ρd,a = da∗ =
i

2(γ − i∆)
(Ω4 − Ω1

Ω∗
3Ω2

Ω2
) (86)

ρd,b = db∗ =
i

2(γ − i∆)
(Ω1 − Ω4

Ω3Ω
∗
2

Ω2
) (87)

Comparing the first and the second term in the expressions (86) and (87) we see that

linear and nonlinear part of the polarizations are of the same order. This is stark

contrast to the usual situations in which the nonlinear polarizations are smaller than

linear by several orders of magnitude ([17]).

For the deeper analysis of coherently enhanced nonlinearities let’s examine a

slightly different scheme presented in figure 4.

Now two strong driving fields couple levels |a⟩ → |c⟩ with Rabi frequency Ω2 and

levels |b⟩ → |d⟩ with Rabi frequency Ω1. These strong fields now convert to fields

Ω3 and Ω4 which couple levels |c⟩ → |b⟩ and |d⟩ → |a⟩ respectively.

Our goal is to analyse the expressions for polarizations corresponding to the

fields Ω3 and Ω4 which are being amplified in the process. We will assume that

the populations of upper levels |c⟩ and |d⟩ in the double-Λ schemes are low (i.e.
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Figure 4: Λ scheme - Atomic levels are represented as |a⟩, |b⟩, |c⟩ and |d⟩ and optical fields

coupling the atomic levels as Ω1, Ω2, Ω3 and Ω4

low saturation) and that transitions in the system are homogeneously broadened.

Also for simplicity we consider the case of driving fields with equal strength (|Ω1| =

|Ω2| = |Ω|), infinitely long-lived coherency between ground state levels |a⟩ and |b⟩

(γc → 0) and equal detuning for |a⟩ → |c⟩ and |b⟩ → |d⟩ one-photon transitions ∆.

We examine the steady-state density matrix of the system. If we want to have

cross coupling via nonlinearity and energy flow from one optical mode to another

we need to satisfy the energy conservation law e.g. we need to have:

ω1 + ω2 = ω3 + ω4 (88)

After solving the equations of motion for populations and coherences for this system

(assuming weak Ω1 and Ω4) ([16], [77]) we arrive at the following expression for

polarizations on the |c⟩ → |b⟩ and |d⟩ → |a⟩ transitions:

P1 = ϵ0χ11E1 + ϵ0χ14e
iδk⃗r⃗E∗

4 (89)

P4 = ϵ0χ44E4 + ϵ0χ41e
iδk⃗r⃗E∗

1 (90)

27



where E1 and E4 are the electric fields corresponding to the Rabi frequencies Ω1

and Ω4 and δ⃗k⃗ = k⃗1 + k⃗2 − k⃗3 − k⃗4 (ki are wave vectors of the fields) is so called

geometric phase mismatch. Here χii are linear susceptibilities and χij are χ
3 type,

FWM susceptibilities. These susceptibilities have the following form ([16]):

χ∗
11 = i

Nρ21
ϵ0ℏ

Γbd

D
[A

Γcd

Γcb

−B(
ΓabΓcd

Ω2
+

Γcd + Γab

Γbd

− Γab

Γca

)] (91)

χ∗
14 = i

Nρ4ρ1
ϵ0ℏ

Ω∗
1Ω

∗
4

|Ω|2
Γcb

D
[A(

Γab

Γbd

+
Γcd + Γab

Γcb

) +B
Γcd

Γac

] (92)

χ41 =
Nρ4ρ1
iϵ0ℏ

Ω1Ω4

|Ω|2
Γad

D
[B(

Γcd + Γab

Γad

+
Γab

Γca

) + A
Γcd

Γdb

] (93)

χ44 =
Nρ21
iϵ0ℏ

Γad

D
[B

Γcd

Γac

− A(
ΓabΓcd

Ω2
+

Γcd + Γab

Γad

− Γab

Γbd

)] (94)

where Γij = γij − i∆ are complex relaxation rates between respective levels, and D

is defined as:

D = (Γcb + Γad)(Γcd + Γab) +
ΓadΓcbΓabΓcd

|Ω|2

If we assume large one-photon detuning ie |∆| ≫ γi, |Γda|, |Γdb| most of the atoms

remain in the state |a⟩ (and hence we have A ≈ 0, B ≈ 1). In this approximation

equation for susceptibilities (91 - 94) reduce to:

χ∗
11 ≈ i

Nρ21
ϵ0ℏ

Γab + i|Ω|2/∆
|Ω|2 + ΓadΓab

(95)

χ∗
14 ≈

Nρ4ρ1
ϵ0ℏ

Ω∗
1Ω

∗
4

∆

1

|Ω|2 + ΓadΓab

(96)

χ41 ≈
Nρ4ρ1
ϵ0ℏ

Ω1Ω2

∆

1

|Ω|2 + ΓadΓab

(97)

χ44 ≈ 0 (98)

If we take a closer look to equation (95) we can see that the medium is no longer

transparent even if the two-photon detuning is at resonance and the ground-state

relaxation is zero (Γab → 0). At this point we see that the linear susceptibility

is always larger than the corresponding nonlinear susceptibility. However, we can

regain the transparency by setting the two-photon detuning to

δ = δ0 ≡ |Ω|2/∆ (99)

which is needed to compensate the AC-Stark light shift. This small two-photon

detuning does not affect the cross-coupling nonlinearity as long as |∆| ≫ |Γda| ie as
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long as our approximation is valid. So now if we compensate for the AC-Stark shift

by a small two-photon detuning we would again have the favourable situation where

nonlinear cross-couplings exceed the linear susceptibility if we have |Ω|2 > |∆|γab.

Consequently if these conditions are met we could have very efficient energy transfer

between strong and weak fields in our double-Λ scheme. From the equations (96) and

(97) we see that cross susceptibilities χ14 and χ41 scale inversely with the detuning

of the field E4 so it is desirable to have it as small as possible. On the other side this

analysis breaks down when optical pumping out of the state |a⟩ becomes significant.

This happens when γcaΩ
2 ∼ γab|∆|2. In our approximation all fields have the same

detuning ∆ so both fields E1 and E2 have similar optical pumping rates which results

in evenly distributed population between lower, metastable, levels |a⟩ and |b⟩ . It

is shown ([16]) that in this case linear part of susceptibilities vanish at the point of

two-photon resonance and nonlinearities become resonantly large:

χ14 = χ41 = −iρ1ρ4
ℏϵ0

NΩ1Ω42γ0(ρuu − ρll)

Γ0(|Γ0|2γab + 2|Ω|2γ0)
(100)

(ρuu − ρll is population difference between upper and lower level). This expression

resembles the familiar expression for the linear susceptibility of a two-level system.

In other words the nonlinear polarization excited under these conditions is of the

same order as the “bare” resonant polarization. This point is graphically expressed

in Figure 5.

From figure 5 we see that there is a large dispersion of the refractive index around

the resonance which is important in two ways:

1.) It can be used to eliminate any residual phase mismatch that may arise (for

example in the non-perfect colinear propagation of optical fields) by small two-

photon detuning.

2.) Large dispersion of index of refraction gives rise to the small light group velocity

Now that we have calculated the susceptibilities we can use them to get the equations

for the electric fields. We will consider the case of co-propagating strong driving (or

”pump”) fields E2 and E3 together with a signal wave E1. Field E4 is generated

in a four-wave mixing process. We will also neglect the effects of depletion and

absorption of the driving fields and treats the signal and generated fields only to the

29



Figure 5: Susceptibility spectrum for the resonantly driven closed system of Fig. 6. (i)

−Im(χij) (ii) Re(χij)

first order. Using Maxwell’s equation for signal and generated field we get:

(
1

c

∂

∂t
+

∂

∂z
)E1,4 = i

k1,4
2ϵ0

P1,4 (101)

If we substitute the values for P1,2 from equations (89) and (90) we get ([16], [77]):

(
1

c

∂

∂t
+

∂

∂z
)E1 =

i

2
k1χ11E1 +

i

2
k1χ14e

iδk⃗r⃗E∗
4 (102)

(
1

c

∂

∂t
+

∂

∂z
)E4 =

i

2
k2χ44E4 +

i

2
k4χ41e

iδk⃗r⃗E∗
1 (103)

We’ve assumed that E1(0) = E0 and E4(0) = 0 so the solution to the above system

is:

E1(L) = E0eδaL[cosh(ξL)
a

ξ
sinh(ξL)] (104)

E4(L)
∗ = E0eδaL[

a41
ξ

sinh(ξL)] (105)

Where a1j = ik1χ1j/2, a4j = ik4χ
∗
4j/2, δa = (a11 − a44 + i∆kz)/2, a = (a11 + a44 +

i∆kz)/2 and ξ =
√
−a14a41 + a2. In these expressions we also have ∆kz which is

the z-component of the total phase mismatch ∆k⃗, z being the axis of propagation

of the driving fields.

The important thing to note is that if we satisfy the phase matching condition

i (Re(a) = 0) by small two-photon detuning, and non-linear term exceeds linear
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Figure 6: Intensity of the signal and newly generated fields (solid) and the driving fields

(dashed) as a function of propagation distance

absorption, the fields E1 and E4 will grow exponentially with coefficient proportional

to |ki|χij (Figure 5).

From figure 6 we see that the energy is being transferred from pump fields to

newly generated fields. After initial exponential energy transfer the system becomes

saturated and fields propagate in free-space like manner.

2.6 Slow light

In mediums with large dispersion an interesting phenomena is observed: short

light pulses propagate through the mediums with speed several orders of magni-

tude smaller than in vacuum. This phenomena is known slowing of light pulses or

slow light ([47]).

In order to better understand the phenomena of slow light let us define phase

velocity vf and group velocity vg of electromagnetic wave. Phase velocity is the

velocity at which the phase of any frequency component of the electromagnetic wave

travels. On the other hand group velocity is the velocity at which the envelope of

the electromagnetic wave’s amplitude propagates. In general, in material medium,

we can control the group velocity of wave package defined by the time shape of its

amplitude. In this sense slow light refers to the phenomena when we are able to
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reduce the group velocity significantly ie when we have vg ≪ vp .

Experimentally, the effect is observed when a short laser pulse is divided with

a beam splitter and one beam is directed to a medium with high dispersion and

other beam propagates the same distance through air. Both pulses are detected

with identical photodiodes. In general two effects are observed:

1.) The beam that propagates through dispersive medium is delayed - slow light

2.) The beam that propagates through dispersive medium is distorted (broad-

ened)

Why do these effects occur? Let τ be the time-width of the light pulse and let

ω be its center angular frequency. According to Heisenberg uncertainty relations

the light pulse has energy uncertainty ∆E and, since E = ℏω, frequency width ∆ω.

Again using Heisenberg uncertainty relations we conclude that frequency width ∆ω

must be larger or equal to inverse time-width of the light pulse:

∆Eτ ≥ ℏ ⇒ ℏ∆ωτ ≥ ℏ ⇒ ∆ω ≥ 1

τ
(106)

In other words light pulse is comprised of Fourier components which have frequencies

Figure 7: Intensity of the signal and newly generated fields (solid) and the driving fields

(dashed) as a function of propagation distance

in interval ω ± ∆ω (figure 7). Phase of the monochromatic plane wave E(z, t) =
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Aei(kz−ωt) + c.c. propagating through a medium with refractive index n is given by:

ϕ = kz − ωt (107)

where k = nω
c
. If we want to have pulse propagation without distortion Fourier

components must add in phase for all values of the propagation distance z. So if

we write the phase as ϕ = nωz
c

− ωt and require that there be no change in ϕ to the

first order in ω we arrive at the condition:

dϕ

dω
= 0 (108)

Substituting ϕ from eq (107) we get:

dn

dω

ωz

c
+
nz

c
− t = 0 (109)

We can express group velocity as change of the z coordinate in time, ie vgr = z/t so

we get:

vgr =
c

n+ ω dn
dω

=
c

ngr

(110)

where ngr = n + ω dn
dω

is the group index of refraction. In cases where the dispersion

of index of refraction is positive ( dn
dω

> 0) we have so called normal dispersion of

index of refraction. From (110) we see that normal dispersion of index of refraction

leads to group velocity being smaller that phase velocity, vgr < vph. It is also clear

that larger dispersion (larger dn
dω
) leads to greater reduction of group velocity vgr. If

we take a look at equation (100) and figure 5 we can see that steep change of index

of refraction is generated by the four wave mixing resonances. Moreover, narrower

resonances lead to larger reduction of group velocity.

On the other side from equation (110) we see that every Fourier component of the

wave package has its own velocity defined by its angular frequency. In case of very

dispersive mediums this will lead to pulse widening or even pulse distortion. If

we expand the propagation constant k(ω) in power series around the light pulse’s

central frequency ω0 we get ([47]):

k(ω) = k0 + k1(ω − ω0) +
1

2
k2(ω − ω0)

2 + ... (111)
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Here k0 is the mean wavevector magnitude of the optical pulse, first derivative with

respect to frequency, k1, is the inverse of the group velocity

k1 =
dk

dω

∣∣∣
ω=ω0

=
1

vgr
=
ngr

c
(112)

and second derivative with respect to frequency, k2, is the dispersion in the group

velocity:

k2 =
d2k

dω2

∣∣∣
ω=ω0

=
d(1/vgr)

dω
=

1

c

dngr

dω
(113)

If the length of the dispersive medium is L then transit time of the light pulse

through the medium is given by:

T =
L

vgr
= Lk1 (114)

and the spread of transit times is given approximately by:

∆T = Lk2∆ω (115)

where the frequency bandwidth of the pulse is given by ∆ω0. From these expressions

we can identify the two main factors that influence light pulse broadening:

1.) Spectral width of the light pulse ∆ω

2.) Propagation distance through the dispersive medium L

It becomes clear that if we want to bring pulse broadening to the minimum we should

use spectrally narrow light pulses (which imply that we should use broad pulses in

time) and short dispersive mediums. On the other hand these constraints are not

desirable since shorter light pulses are more favorable for information transfer (if we

think about optical pulse train ref [?]) and shorter propagation distances through

dispersive mediums mean smaller light reductions. The aim of this thesis is two find

optimal trade off between these factors for the light pulses in hot potassium vapor.

2.7 Pockels effect

For creation of short light pulses we’ll be using devices capable of modificating light

phase and polarization - polarizers, wave-plates, phase retarders etc. These devices

are usually made of birifingent anisotropic materials ([81]). Polarization of electro-

magnetic wave is described by the Johnson vector and the change of polarization

introduced by the optical system is described by Johnson matrix ([81]):
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A2x

A2y

 =

T11 T12

T21 T22

A1x

A1y

 (116)

or in condensed form:

J⃗2 = T J⃗2 (117)

where J⃗1 and J⃗2 are the Johnson vectors of incident and transmitted waves respec-

tively and T is the Johnson matrix that describes the optical system.

Lets take a closer look at phase retarders. These devices are used for changing

the state of polarization of electromagnetic waves. Phase retarders are usually made

of birifringent anisotropic plates and are characterized by phase delay Γ and index

of refraction of ordinary (no) and extraordinary (ne) axis. These crystals are usually

cut in a way that light propagates along the z-axis(z-cut crystals) and ordinary and

extraordinary axes are orthogonal to the direction of propagation. Along these main

axes of the crystal normal modes of the electromagnetic wave travel with different

speeds c/nx and c/ny. If nx < ny than x axis is called the ”fast” axis. So for the

plate of length d we have a phase delay of:

Γ = (nx − ny)k0d = 2π(nx − ny)d/λ0 (118)

Johnson matrix of this system can be written as:1 0

0 e−iΓ

 (119)

For example if Γ = π we would get the λ/2 wave-plate and for Γ = π/2 we get λ/4

wave-plate.

Some materials change their refractive index in electric field. This effect belongs

to the broader group of electro-optic effects ([81]). If those materials are birifringent

anisotropic crystals they be used as phase retarders with controllable phase delay. If

the change of refraction index is proportional to the applied field then we have the

Pockels effect and if the dependence if quadratic we have Kerr effect ([81]). Usual

materials used as linear electro-optic mediums are NH4, H2PO4, KH2PO4, LiNbO3,
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LiTaO3, CdTe .

Lithium niobate (LiNbO4) is one of the materials that have the exhibit the largest

Pockels effect. Equations that describe the change of refractive index along x and y

axes in applied electrical field E⃗ are:

nx = ne(1−
1

2
n2
er33E) (120)

ny = n0(1−
1

2
n2
0r13E) (121)

∆n = nx − ny = const+
1

2
(n3

er33 − n3
0r13)E (122)

where ne and no are extraordinary and ordinary index of refraction respectively, and

r13 and r33 are elements of the electro-optic tensor of LiNbO3 ([81]).

2.8 Electro-optic modulator

Electro-optic modulator is a device which uses the electro-optic effect to modulate a

light beam passing through it. In most cases Pockels cells are used as electro-optic

modulators.

Figure 8: Transversal electro-optic modulator. L - length of the crystal, d - thickness of

the crystal, V - applied voltage to the sides of the crystal. The arrow shows the direction

of light propagation through the crystal

When an EM wave with wavelength λ0 passes through a Pockels cell (figure 8)

of length L which has voltage V applied to its sides then the phase shift of the EM

wave is:
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ϕ = k0∆nL = 2π∆nL/λ0 (123)

where k0 = ω/c = 2π/λ0 and ∆n is the change of index of refraction due to Pockels

effect (122). If we denote the crystal thickness as d then electric field inside the

crystal is E = V/d and equation (123) gets the following form:

ϕ = ϕ0 − π
V

Vπ
(124)

where ϕ0 is the phase shift in absence of electric field and Vπ is the voltage that

should be applied in order to get a phase shift of π . Then we have that:

Vπ =
d

L

λ0
τn3

(125)

where τ is the electro-optic coefficient of the material. Equation (125) expresses the

linear dependence between the phase shift and applied voltage. It also shows that it

is possible to perform the phase modulation of the EM wave by changing the voltage

applied on the crystal.

Phase modulator put in one branch of the optical interferometer can function as a

intensity modulator. Lets consider the Mach-Zender interferometer with modulator

in one of its branches (fig 8)

If we operate with 50:50 beam splitter and combiner then we have the following

relation between the input and the output intensity Ii and Io:

Io =
1

2
Ii +

1

2
Ii cosϕ = Ii cos

2(ϕ/2) (126)

where ϕ = ϕ1 − ϕ2 is the difference in phase shift accumulated during light prop-

agation through branches 1 and 2 of the interferometer. The essential part of the

interferometer is the beam combiner B where light beam from two branches inter-

fere. Since there is a phase modulator in branch 2 the total phase of the light beam

accumulated through branch 2 is ϕ2 = ϕ20 − πV/Vπ. Because of the presence of the

phase modulator in branch 2 we can control the phase difference ϕ and the output

intensity Io.

37



Figure 9: Mach-Zender intensity modulator. Phase modulator is located on branch 2 of

the interferometer. A - beam splitter, B - beam combiner. By changing the voltage V

we control the phase difference between beams in branches 1 and 2 and by doing so the

intensity I0 at the output of the interferometer. Ii is the light intensity at the input of the

interferometer. Arrows show the direction of light propagation.

Transmittance of the interferometer is the quantity that represents the ratio

between input and output light intensities, T = Io/Ii. Using (126) we get:

T = Io/Ii = cos2(ϕ/2) (127)

Since the phase difference is controllable by voltage applied to the EOM V it follows

that the transmittance is also controllable by V :

T (V ) = cos2(
ϕ0

2
− π

2

V

Vπ
) (128)

Graph of this dependence is given in figure 9

From this figure we see that the device can be used as linear modulator of

intensity if we set the phase difference between two branches to about π/4 and hence

work in the area with transmittance of approximately 1/2. On he other side if set the

phase difference to multiple integer integer of π/2 we would have zero transmittance,

T = 0. Then if we apply the voltage Vπ we would regain the full input intensity

at the output, ie T = 1. In other words the device acts as an optical switch. It

should also be noted that in reality the maximum transmittance is always smaller

than 1 because of losses due to reflection, absorption and scattering. Similarly the
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Figure 10: Dependence of transmittance of the EOM and the applied voltage in Mach

Zender configuration. In point A we have destructive interference and in point C we have

constructive interference. If we want to go from point A to point C we have to change the

applied voltage for Vπ. Around point B the dependence is approximatelly linear so the

dependence of output intensity and the applied voltage is linear in this range.

minimum transmittance is bigger than zero because of non-ideal alignment between

axes of polarization of EM wave and axes of the crystal. The ratio between maximal

and minimal transmittance is called the extinction ratio. Today it is possible to have

EOMs with extinction ratio larger than 30dB ([81]).
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3 Four wave mixing in potassium

3.1 Properties of Potassium

Potassium is a member of the first group of periodic table of elements - the group of

alkali metals. Its chemical symbol is K and atomic number Z = 19. Potassium was

first isolated by electrolysis of molten potassium hydroxide KOH by Sir Humphry

Davy in 1807. Potassium is hydrogen-like atom with one valence electron in the 4s

orbital. Potassium has three isotopes - 39K,40K and 41K of which 40K is radioactive.

Basic properties of potassium isotopes are given in table 1.

Table 1: Properties of naturally occurring potassium isotopes. ([76])

Potassium has low ionization energy and hence is very reactive. Elemental potas-

sium reacts vigorously with water, generating sufficient heat to ignite hydrogen emit-

ted in the reaction. Because of its high reactivity, elemental potassium is usually

stored in paraffin oil. Naturally it occurs only in ionic salts and can be found in

many minerals. List of general physical properties of potassium is given in table 2:

Table 2: Potassium physical properties. ([76])

In order to perform laser spectroscopic research potassium has to be in vapor

state. For this purpose potassium is usually confined in the heated glass vacuum

cell where the metal evaporates until the vapor reaches thermodynamic equilibrium.

The pressure of the vapor (and simultaneously the density of atoms) is temperature
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dependent and is given by the following equations ([82]) :

(solid) log p = 7.9667− 4646

T
298K < T < Tm (129)

(liquid) log p = 7.4077− 4453

T
Tm < T < 600K (130)

Graph plot of vapor pressure dependence on temperature is given in figure 9:

Figure 11: Potassium vapor pressure. T = 336.8K is the potassium melting point (dashed

green line). Taken from [82]

.

Potassium has two strong spectral lines. First is the so called D1 line on 2S −→2

P1/2transition and so called D2 line on 2S −→2 P3/2 transition. Properties of D1

and D2 lines for three different potassium isotopes are given in the following tables

([83]):

D1 and D2 lines form a fine-structure doublet which is a consequence of spin-

orbit interaction. This interaction originates from the coupling of the orbital angular

momentum L of the valence electron and its spin S with corresponding quantum
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Table 3: D1 line properties of 39K

Table 4: D2 line properties of 39K

Table 5: D1 line properties of 40K

Table 6: D2 line properties of 40K

Table 7: D1 line properties of 41K

numbers L and S respectively. Vector sum of orbital and spin angular momentum

gives total angular momentum :

J = L+ S (131)
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Table 8: D2 line properties of 41K

The associated quantum number is denoted as J which takes the following values:

|L− S| ≤ J ≤ L+ S (132)

Quantum number J gives the magnitude of orbital electronic angular momentum

J which is equal to ℏ
√
J(J + 1). In the case of potassium the ground state is the

42S1/2 level which (being the S state) has orbital momentum L = 0 and spin S = 1/2

so the only possible value of J (132) is J = 1/2. For the first excited P state we

have L = 1 and S = 1/2 which results in two possible values for J (132) J = 1/2

and J = 3/2. This fine structure interaction lifts the degeneracy of the 42P1/2 and

42P3/2 levels and gives rise to the D1 and D2 lines (fine-structure doublet).

The interaction between nuclear angular momentum and total electronic angular

momentum further splits the fine-structure levels and gives rise to the hyperfine

structure. Coupling of the nuclear spin I and electronic angular momentum J gives

the total atomic angular momentum F:

F = J+ I (133)

Quantum number F associated with the operator F takes values in the range:

|J − I| ≤ F ≤ J + I (134)

and, similar to J , is the magnitude of total electronic angular momentum I

which is equal to ℏ
√
I(I + 1). The energy shift of the hyperfine levels is given by

the following expression ([84]) :

∆Ehf =
ahf
2

[F (F + 1)− I(I + 1)− J(J + 1)] (135)

which for a ground state J = 1/2 spin S = 1/2 in zero external field reduces to:

∆Ehf =
ahf
2

(I +
1

2
) (136)
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Figure 12: Detailed atomic structure of the D1 and D2 lines given for 39K, 40K and 41K.

Hyperfine splitting energies are taken from [84] and [83]

(ahf is the magnetic dipole constant)

Hyperfine structure of potassium isotopes 39K,40K and 41K are given in figure 16

The research of coherent effects in this work was done entirely on D1 line of

39K. Because of this we will examine this transition in more detail. Since the atoms

in gas follow Maxwell-Boltzmann velocity distribution the D1 line is subjected to

Doppler broadening ([85]). The maximum splitting between the four hyperfine tran-

sitions of the D1 line (figure 12) is smaller than the Doppler width (825 MHz at
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69°C Doppler width ([86]) vs 461.7 MHz hyperfine groundstate splitting for 39K

) . Due to this fact hyperfine structure cannot be observed with standard spec-

troscopic techniques (ie tuning the laser frequency around the atomic transition).

Fortunately there are several techniques that can resolve spectral lines with width

smaller than the Doppler width (so called Doppler free techniques). One of those

techniques is saturated absorption spectroscopy which uses probe-pump configura-

tion of counter–propagating beams derived from a single laser ([85]). Let z be the

axis of propagation of counter-propagating pump and probe beams and vz be the

z-component of the atoms velocity vector. Then in general, due to the Doppler shift,

the atoms will see different frequencies of the pump and the probe beam. If the atom

is moving towards the pump, in the atom’s frame of reference the pump beam will

have frequency ω0+kvz and the probe beam will have ω0−kvz where ω0 is the laser

frequency in the laboratory frame of reference, kvz is the scalar product between the

laser’s wave vector and z-component of atom’s velocity. But for the group of atoms

with vz = 0 the pump and the probe beam will have the same frequency. When

ω0 is on hyperfine resonance the pump beam would excite atoms form the velocity

group vz = 0 (i.e. saturate the transition) and there would be less atoms from this

group left to absorb the probe beam. So if we detect the probe photons we will

observe increased transparency peak on the hyperfine resonances due to this effect.

In this setup additional structure arises, the so called cross-over resonances

([85]). These resonances occur on frequencies halfway between two hyperfine tran-

sitions and are also caused by the Doppler shift of the pump and the probe beams

in the atoms reference frame in the situation where one beam is resonant with the

lower and other beam with the higher transition. The observed features are useful

for stabilization of laser frequency with respect to an atomic transition, as well as for

determining the properties of atomic vapor (number density, temperature, hyperfine

splitting), etc. but on the other side complicate the spectrum and can lead to the

spectral lines overlap if the lines are close or the other line broadening effects are

strong. Typical hyperfine spectrum of the 39K is shown in figure 13.
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Figure 13: Typical hyperfine structure of the D1 line of 39K obtained by saturation spec-

troscopy and lock-in amplification detection ([86]). Three groups of three lines correspond

to different ground states and a crossover. Within each group there are three peaks cor-

responding to different hyperfine and crossover resonances.

3.2 Double lambda scheme on D1 line of Potassium and

theoretical motivation

In our work double lambda scheme was implemented on D1 line of potassium 39K

(figure 19)

Figure 14: Double lambda scheme on D1 line of 39K. Picture taken from [34]
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Ground-state level 4S1/2 has two hyperfine sublevels with quantum numbers F =

1 and F = 2. Hyperfine splitting of 4S1/2 level is HFS = 461.7MHz. Hyperfine

splitting of the first excited state 4P1/2 is 55.5MHz and can be omitted. Intensive

laser beam - the pump, couples hyperfine sublevel of the ground-state with first

excited state 4P1/2. The detuning of this coupling is called one-photon detuning

and is denoted by ∆. Weak laser beam - the probe, couples the excited level with

F = 2 hyperfine sublevel of the ground state. The detuning of this coupling is

called two-photon detuning and is denoted by δ. Beacuse of its strong intensity the

pump also couples F = 2 sublevel of the ground-state with a virtual level which is

energetically above the excited 4P1/2 level by ∆+HFS + δ. Lastly the virtual level

is coupled with the lower hyperfine sublevel F = 1 via so called conjugate beam

which effectively closes this cyclical four-wave mixing scheme.

Atomic susceptibilities govern the four-wave mixing process and affect the am-

plification of probe and conjugate beams. The dependence of the probe - conjugate

cross susceptibility |χpc| on hyperfine splitting and two-photon detuning is shown in

figure 15 and is calculated according to equations A12–A20 given in the appendix

of [77].

Figure 15: Dependence of |χpc| on ground state hyperfine splitting and two-photon de-

tuning δ. The one-photon detuning (∆ = 700MHz) and dipole matrix elements of the

double-Λ scheme transitions were kept constant. Picture taken from [34].

The equations enable the calculation of the stationary values of |χpc| as a func-
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tion of the relevant experimental parameters: one-photon detuning, two-photon

detuning, ground state hyperfine splitting, pump laser Rabi frequencies, and the

concentration of the atoms, i.e. the temperature. The equations are given under the

assumption that Rabi frequencies for both pump transitions in figure 14 are equal.

The probe and conjugate fields are assumed to be weak and their contribution is

kept only to the first order. Since we want to estimate the influence of ground state

hyperfine splitting of alkali atoms on the efficiency of four-wave mixing we kept all

other quantities constant and varied two-photon detuning only. The results show

that the maximum of |χpc| increases as hyperfine splitting decreases. The model

also predicts that the two-photon detuning δ, corresponding to the maximum |χpc|,

also decreases, indicating that both Λ schemes should be closer to n resonance.

This analysis, besides the ones pointed out in Introduction, motivated us to try

to achieve four-wave mixing in potassium since it has the lowest hyperfine splitting

of the ground-state level among all alkalis (taking into account stable isotopes only).

3.3 The Laser System

Our laser system for the experiment consist of Coherent MBR 110 Ti:Sapphire laser

pumped by Coherent Verdi 5 Nd:YVO4.

• Verdi 5 Pump Verdi 5 by Coherent is a laser system itself which consists of

strong pump diode laser and Neodymium Vanadate (Nd:YVO4 ) laser. Nd:YVO4

single frequency, solid state laser provides single-frequency green (532 nm) out-

put at power levels greater 5 Watts. The major optical elements of the laser

include:

∗ Vanadate as the gain medium

∗ LBO (lithium triborate) as the frequency doubling crystal

∗ An etalon as the single-frequency optic

∗ Optical diode

∗ Astigmatic compensator and three cavity mirror
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Figure 16: Verdi 5 optical scheme

Scheme of the Verdi 5 is given in figure 16.

The frequency doubling nonlinear crystal is LBO which is non-critically phase

matched. The crystal is heated to around 150°C by a resistive heater in order to

have the best possible nonlinear efficiency. The temperature of the Vanadate

and etalon is also controlled for best possible efficiency. For this purpose

thermo-electric coolers (TECs) are used which can either cool down or heat

when necessary. Bidirectional wave propagation inside the ring resonator is

prevented by using the so called optical diode which favors one direction over

the other by utilising the Faraday rotation effect ([81]). The function of the

etalon is to reinforce single mode operation. Nd:YVO4 gain medium is pumped

by strong FAP-I (Fiber Array Package – Integrated) laser diode which operates

at 808nm. Diode laser light is fiber coupled with Verdi 5.

• MBR 110 is single frequency, solid state laser that utilizes Ti:Sapphire crystal

as its gain medium. The major optical elements of the laser include (figure

19):

∗ Ti:Sapphire as the gain medium

∗ Birifringent filter for coarse frequency tuning

∗ An etalon for single-frequency operation and fine frequency tuning
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∗ Optical diode for unidirectional operation

∗ Bruster plates for frequency scaning

∗ Temperature stabilized Reference Cavity for frequency locking and linewidth

reduction

The gain medium is pumped by 5W, 532nm green light from Vergi 5 which

travels through free space from Verdi 5 to MBR 110.

Figure 17: MBR 110 optical scheme

MBR laser uses ring resonator and unidirectional propagation achieved by

an optical diode to avoid spatial hole burning effect ([85]). Reducing spa-

tial burning effect leads to single mode operation and increased laser power.

Ti:Sapphire has a very broad emission spectrum 720 - 940 nm at pump power

of 5W. In order to tune across the entire tuning range, whilst maintaining

single frequency operation and preventing mode-hops, two intracavity filters

are required. Tuning element used to obtain the required wavelength from a

laser is a birefringent filter. This is a relatively coarse wavelength control and

so an intracavity thin etalon ensures single frequency operation and is used

to allow fine tuning of the laser wavelength as well. This etalon is also used

to prevent laser mode-hops whilst the laser is being fine tuned, and scanned.

The method used to prevent mode-hopping is a locking scheme whereby the
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transmission of the etalon is locked to the laser frequency.Within the laser

cavity are two Brewster angled glass plates. These plates are mounted in such

a way that when they are rotated they alter the optical length of the laser

without diverting the intracavity laser beam path. Using this technique the

laser frequency can be scanned in a controlled manner. Scanning range spec-

ified by the manufacturer is ± 30 GHz but we’ve never achieved more than

± 10GHz without loosing frequency lock. A fraction of the Ti:Sapphire laser

output is directed into a temperature controlled, hermetically sealed, Invar

stabilized reference cavity. By locking the laser to one of the fringes of the

high finesse reference cavity the laser linewidth can be reduced to less than

75 kHz. Using a long extension piezo ceramic the reference cavity length can

be scanned. Strain gauges monitor the reference cavity length with a high

degree of linearity and precision. Consequently, the laser can be scanned by

maintaining the laser lock to the scanning reference cavity. The ring resonator

is made from a single block of aluminum which gives the laser stability and

consequently a narrower linewidth.

Figure 18: MBR 110 in operation

3.4 Experimental setup

Experimental setup is based on [32] with certain changes and additions. Scheme of

the experimental design is shown in figure 19.
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Figure 19: Scheme of experimental setup for four-wave mixing in potassium. BS - beam

splitter, PBS - polarization beam splitter, M - mirror, FM - flip-mirror, FC - fiber coupler,

AOM - acousto-optic modulator, L - lens, λ/2 - lambda-half wave plate, λ/4 - lambda-

quarter wave plate, PD - photo diode

MBR-110 Ti:Sapphire delivers up to 600mW of light at D1 line of 39K (770.108

nm) and it is used for both the pump and probe beams. The beam is first split by

the 90:10 beam splitter. Stronger, non reflected beam is used as a pump beam in the

experiment (red beam in figure 19). The reflected beam (green beam in figure 19)

has several purposes. When the flip mirrors are up it serves as a pump in saturation

spectroscopy scheme (see 3.4.1). Also a small fraction of the beam is picked on the

plane-parallel plate, fiber-coupled and sent to the wave-meter for coarse frequency

measurement. Effectively we have two steps of laser frequency calibration - first,

coarse using wave-meter and second, fine using saturation spectroscopy. Finally the

reflected beam serves as a probe in our FWM experiment. The beam is sent to

acoustooptic modulator in double pass configuration (see 3.4.2) where its frequency

is shifted for approximately hyperfine splitting of the 39K ground state. Two-photon

detuning δ is scanned by changing the RF frequency fed to the first AOM (also see
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3.4.2). Using two λ/2 wave plates we alter the plane of polarization of the pump

and probe beams in order to make them mutually orthogonal. The beams are then

combined at a polarization beam splitter and sent through the 50 mm long, natural-

abundance vacuum potassium vapor cell (see 3.4.3). The cell is heated using system

based on hot air (see 3.4.3). Pump and probe beam intersect inside the cell at a

small angle that is changed by the mirror in the range 2-10 mrad. Both beams,

the pump and the probe seed, are focused at the intersection by using a pair of

AR-coated lenses and their waists are 1.05 mm and 0.8 mm, respectively. After

passing through the vapor cell, the pump beam is reflected by the second polarizing

beam splitter. The newly created conjugate beam (which has the same polarization

as the probe seed) and the amplified probe beam are detected by two photodiodes

(Hamamatsu S3883).

3.4.1 Frequency calibration and stability - saturation spectroscopy and

frequency drift

As mentioned in 3.1 saturation spectroscopy (SS) setup had two counter-propagating

beams with same frequency. First beam, the pump, saturates (in our case hyperfine)

transitions while the probe probes those transitions and gets detected. In order to

determine the long term frequency stability of the laser and to determine one photon

detuning we have incorporated the saturation spectroscopy (SS) setup into our ex-

periment. To this end we have added two flip mirrors which divert the probe beam

before the double-pass AOM making it the saturation beam in SS configuration

(dashed gray beam in figure 19) which counter propagates the pump in the vapor

cell. The intense pump (red beam in figure 19) becomes the probe. Because of its

high intensity this beam is strongly attenuated by using λ/2 plate and polarization

beam splitter. SS pump and probe overlap in the potassium vapor cell and after the

interaction with the atoms the probe beam gets detected on the photodiode.

Spectrum with hyperfine resolved features is given in figure 20. The temperature

of the vapor was 670C, pump power 7mW and probe power 400µW. This spectra

is obtained by subtracting Doppler profile from the SS signal. We can distinguish

three groups of lines corresponding to different sublevels of the ground state of 39K.
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Figure 20: Saturation spectra of the D1 line of 39K

Within these three groups there are three peaks (except for Fg = 2 group) which

correspond to different hyperfine transitions. We have used the Fg = 1 −→ CO

transitions as our reference for one-photon detuning.

In order to perform quality measurements the temporal frequency stability of

the laser is essential. For measuring the potential frequency drift of the laser we

have locked our laser frequency to the reference peak (Figure 24) and observed the

change of the level of the signal from the photodiode. The change of the level of the

signal corresponds to frequency drift of the laser.

First we’ve calibrated laser frequency drift to the corresponding change of pho-

todiode signal. After that we’ve performed multiple measurements of the laser

frequency drift (10 times) and linearly fitted the results. Example of one frequency

drift measurement and the linear fit is shown in figure 21. From the linear fit we

obtain the value of the slope which is (0.01 ± 0.002) MHz/s. This translates to

about 0.5 MHz/min. Since FWM process is very sensitive to two-photon detuning

and two-photon detuning is usually in order of several MHz we’ve put a time limit
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Figure 21: Measuring temporal frequency drift of the MBR 110 laser. Example of one

measurement is shown in green, while the linear fit is given in red

of our single FWM measurements to one minute. After a single FWM measurement

we would quickly put the experiment in saturation spectroscopy mode and look for

unexpected large frequency jumps. If the jump occurred we would disregard the

measurement.

3.4.2 Double-pass acoustooptic modulator

As mentioned in 3.4 we use acoustooptic modulator in double-pass configuration for

two-photon detuning scanning. AOM is an optical device that uses the interaction

between light and ultrasound waves to change the intensity, phase, frequency and

direction of the incident optical beam ([81])(figure 22).

Its main part is an optical crystal in which the diffraction of light can be realized.

When an ultrasonic wave propagates through the crystal a series of stresses occur

which spread through the crystal. In parts where the sound pressure is higher a

small crystal compression occurs which causes a large change in the refractive index

at that location. Consequently in the parts where the pressure is lower the refractive

index is also lower so we get modulation of the refractive index within the whole

crystal ([81]). The modulation effectively acts as a diffraction grating on which scat-
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Figure 22: Acoustooptic modulator - Isomet 1205-C

tering of photons occurs. The dominant effects that lead to diffraction are Bragg and

Raman-Nath diffraction ([81]). The result is that the light beam passing through

the crystal is diffracted into several diffraction orders. An important consequence

is that every diffraction order has a light frequency shift equal to integer product

of the sound wave frequency. For example, light in the first diffraction order would

have frequency ω0 + Ω where ω0 is the frequency of the incident light and Ω is the

acoustic wave frequency.

The second important part of the AOM is the piezoelectric transducer which is in

contact with the optical crystal. Piezoelectric materials change their physical dimen-

sions in the electric field. When radio frequency voltage is applied to piezoelectric it

expands and contracts at the frequency of the applied RF voltage. These oscillations

are transferred to the crystal resulting in a sound wave with a flat wave front. The

frequency of this wave is equal to the frequency of alternating voltage.

Diffracted beam stands at a certain angle relative to the incident beam. Magnitude

of this angle is a function of the frequency of the sound wave traveling through the

crystal, ϕ = ϕ(Ω) . Since we use the AOM not just to make a frequency offset from

the pump but also for frequency scanning (two-photon detuning scanning) the fact

that angle and consequently the direction of the diffracted beam changes with sound

wave frequency is not desirable. In order to remedy this effect we use AOM in so

called double-pass configuration (figure 23)

We first add a polarizing beam splitter before the AOM to ensure that light
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Figure 23: Scheme of AOM in double-pass configuration. PBS - polarizing beam splitter,

AP - aperture, AOM - acoustooptic modulator, ϕ - diffraction angle, λ/4 - lambda-quarter

wave plate, P1 - beam entering AOM, P2 - undiffracted beam, P3 - first order diffracted

beam, P4 - double diffracted beam

coming to the AOM (P1) is linearly polarized. Before the AOM we place two lenses

in telescope configuration. Its function is to shape the beam in order to get the best

performance of the AOM. After the AOM we place a lens so that the output aperture

of the AOM is in the focus of the lens. The function of the lens is as follows: the

beam diffraction angle ϕ is, as mentioned, a function of the frequency of the sound

wave through the crystal ϕ = ϕ(Ω). This implies that by changing the sound wave

frequency Ω the direction of the diffracted beam P3 will also be changed. But since

the P3 beam source is in the focus of the lens the beam becomes parallel to the

optical axis of the system (defined by the direction of P1) after passing through

the lens. Behind the lens we place a mirror (normal to the optical axis) which

reflects the diffracted beam in the same direction. After the second pass through

the lens the reflected beam focuses on the AOM aperture. After passing through the

AOM again, the beam is diffracted by an angle Ω one more time leading to it now

becoming collinear with the incident beam P1. The function of the lambda-quarter

plate is to separate double-diffracted beam from the incident beam. In the double

passage through the λ/4 plate the plane of polarization of the wave is rotated by a

total of 2 × π/4 = π/2 which makes it orthogonally polarized with respect to the

input beam. Due to this the double diffracted beam is reflected at the polarization

beam splitter (R4). We see that for any change of the frequency of the sound wave

through the crystal Ω the direction of the doubly diffracted beam remains the same
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which is the purpose of the double-pass method.

3.4.3 Potassium vapor cell and the heating system

As mentioned in section 3.1 potassium is usually confined in the glass vacuum cell.

We use 50 mm long, natural-abundance vacuum vapor cell (figure 24)

Figure 24: Potassium vapor cell with Brewster angled windows

The windows of the cell are Brewster angled in order to minimize the reflection.

The cell is rotated to provide the maximal pump transmission (95% per window).

Since the probe seed is polarized perpendicularly to the pump, its transmission is

lower (70% per window).

In order to get desired concentration of the potassium atoms we need to heat

the cell and control its temperature. To this end we’ve designed and implemented

heating system based on hot air (figure 25).

Our lab is equipped with pressurized air source. Using the valve for air we control

the pressure of the air in the system. The pressurized air first goes through flow

control. Flow control is made out of aluminum cylinder inside which we’ve mounted

an air fan. The fan generates electric current via electromagnetic induction. This

current is fed to the PID controller that essentially detects the presence of the

current. If the air flow stops PID controller shuts down the air heater by switching

off its power supply. For air heating we use 1kW solenoidal heater. The heater is

confined in two concentric aluminum cylinders (figure 25) in order to reduce power

and heat dissipation (Appendix blabla).
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Figure 25: Potassium vapor cell heating and temperature control system

Figure 26: Air heater and double aluminum cylinders scheme. Air flow is represented by

blue arrows

The heated air then passes through small aluminum cylinder that contains plat-

inum resistance thermometer pt1000. This is platinum based sensor, with high pre-

cision and accuracy capable over a wide range of temperatures (−200◦C to 850◦C).

This sensor is used for air temperature control. To this end we’ve assembled an-

other PID controller (appendix balabla) which uses signal from pt1000 sensor. The

controller is connected with the power supply of the air heater on and controls it in

other to achieve the wanted temperature by turning it off and on. During the exper-

iment integration and differentiation parts of the controller proved to be excessive

so we’ve used only the proportional part.

For the purpose of heating the potassium cell we’ve machined an aluminum
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container with cavities for hot air flow (figure 37).

Figure 27: Scheme of aluminum container for potassium vapor cell

When flowing through the cavities hot air heats up the container and conse-

quently the potassium vapor cell. The temperature inside the container is measured

by another pt1000 sensor which is placed in the vicinity of the vapor cell. We use the

standard lab multimeter for measurement of sensor’s electrical resistance and then

look up the pt1000 resistance temperature table in order to infer the temperature.

Before performing any measurements we would wait for the temperature measured

by this sensor to stabilize completely indicating the state of thermal equilibrium

between the container and the cell is achieved. On opposite ends of the container

we have drilled small openings that allow laser light to go through the vapor cell.

The container itself is placed inside the cylindrical shell made out of temperature re-

sistive plastic which serves as heat insulator. The schematics of both the aluminum

container and the plastic a heat insulator are given in the Appendix blabla.
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3.5 Results and discussion

As mentioned in the Introduction this the first time that the four-wave mixing in

potassium vapor in co-propagating geometry was observed. So apart from iden-

tifying the conditions that would lead to the highest possible gain we were also

motivated to explore this phenomena under different experimental conditions in

order to achieve deeper insights. On the other side, due to the high number of

parameters, it was not feasible to perform measurements over the whole parameter

space so we were forced to investigate parts of this space that we considered the

most important. Nonetheless this work can serve as a basis for building intuition

about the phenomena and for choosing optimal experimental solutions in the future

investigations.

The efficiency of the four wave mixing process is measured by the gain of probe and

conjugate beams. The gains of the probe and the conjugate are defined as:

Gp =
Pp

Pin

(137)

Gc =
Pc

Pin

(138)

respectively, where Pp and Pc are the measured powers of the probe and the con-

jugate beams, respectively, and Pin is initial power of the probe seed inside the

amplifying medium

As suggested by equation (99) a certain two-photon detuning is required to com-

pensate AC-Stark light shift and thus maximize transparency. We also note that

theoretical calculations (section 3.2) hint that two-photon detuning needed for AC-

Stark compensation decreases with ground state hyperfine splitting. In order to

experimentally investigate the of two-photon detuning influence on FWM process

we’ve performed measurements of probe and conjugate gains with one-photon de-

tuning ∆ as a parameter. The δ step was 2 MHz. The results for various values of

∆ are shown in figure 32.

The maximal conjugate gain Gc = 82, was obtained at ∆ = 700 MHz and δ = −6

MHz. The probe gain for the same parameters was Gp = 58. The reason for the

maximum gains occurring at a particular ∆ is the competition of two effects: FWM
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Figure 28: The probe (black squares) and the conjugate (red circles) gain curves versus

two-photon detuning δ in the vicinity of Raman resonance (δ = 0) at ∆ equal to (a) 400

MHz, (b) 700 MHz, (c) 1000 MHz and (d) 1300 MHz. The pump power was P0 = 400

mW and the probe seed power was Pin = 200 µW. Vapor temperature was kept constant

at 120◦C (≈ 3 × 1012 atoms/cm3 and angle between the pump and the probe was ϕ = 3

mrad. The lines are to guide the eye. Picture taken from [34].

amplification and one-photon absorption ([32], [77]). When ∆ increases, the FWM

amplification of the probe and the conjugate beams decreases due to the one-photon

Raman detuning, but so does one-photon absorption since we are moving away from

the one-photon resonance. The best trade-off in our case is for ∆ = 700 MHz (figure

28(b)). Since the frequency offset between the probe and the conjugate beams is

≈ 920MHz (approximately double the HFS) and the probe beam is tuned closer to

the resonance, one-photon absorption is stronger for the probe beam (figure 29).

62



Figure 29: Frequency of the probe, pump and conjugate beams versus one-photon absorp-

tion Doppler profile. ∆ - one-photon detuning, FWHM - full width half maximum, HFS

- hyperfine splitting of the ground state. Due to the vicinity to the resonance the probe

beam is experiencing stronger one-photon absorption.

This is the reason why we observe different Gp and Gc for smaller ∆ (figures

4(a) and (b)). At larger ∆, one-photon absorption becomes smaller, so does the

difference between Gp and Gc (figure 4(d)), but are rather small due to detuning

far from resonance. We can also observe that point of maximal gain moves closer

to δ = 0MHz as we increase one-photon detuning ∆. This is with accordance with

(99) from which we see that the two-photon detuning needed for canceling the AC-

Stark shift is inversely proportional to the one-photon detuning. According to our

expectations, qualitatively supported by results in figure 28, we have obtained higher

gains than in other alkali atoms under comparable experimental conditions. For

more detailed theoretical study and quantitative comparison between experimental

and theoretical results one might consider adjusting the theoretical model from [77]

for particular properties of potassium. Unlike rubidium, all the transitions forming

the double−Λ scheme in potassium are overlapped due to large Doppler broadening

at specified temperatures. Moreover, one might also consider the geometry and

intensity profiles of overlapping laser beams and their spectral properties.

The dependence of Gp and Gc on the temperature for various values of ∆ is

shown in figure 30.
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Figure 30: Temperature dependence of (a) the probe gain Gp and (b) the conjugate gain

Gc. Different colors correspond to the different values of ∆ (given in the legend above).

For the given range of the temperature of potassium vapor the number density of the

atoms, calculated according to[76], is between 3.71011 atoms/cm3 (at 90◦C) and 1.71013

atoms/cm3 (at 150◦C). Stars denote the temperatures at which filamentation and self-

focusing of the probe and the conjugate beams occur. Parameters are P0 = 400mW,

Pin = 200µW, ∆ = 700, ϕ = 2mrad. Picture taken from [34].

For each ∆ on the graph, we set δ to maximize the gains of the probe and the

conjugate beams. As the concentration of potassium atoms increases, the cross-

susceptibilities (χcp and χpc) also increase ([77]). On the other hand, large sus-

ceptibilities lead to large values of the refractive index and its transverse gradient

that cause beam self-focusing and beam filamentation ([17], [77]). Stars in figure 30

indicate the highest temperatures for particular values of ∆, above which aforemen-

tioned effects prevent the proper measurement of the intensities of the probe and the

conjugate beams. At high vapor temperatures and/or pump intensities self-focusing

of the probe and conjugate beams appears gradually, ending up with beam break-up

([17]). As the pump intensity and/or vapor temperature increases the probe and the

conjugate beams become more divergent due to self-focusing. This makes the beams

partially overlapped and hinders proper measurement of the powers independently.

Varying the temperature and ∆ we have determined that the values of T = 140◦C

and ∆ = 1500 MHz provide the highest probe gain, Gp = 63 (we found Gc = 69

for the same set of parameters). The dependence of Gp and Gc on the mutual angle
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between the pump and the probe beam is presented in figure 31.

Figure 31: Dependence of the probe (black squares) and the conjugate (red circles) gain

on the angle ϕ between the pump and the probe beams. Parameters are P0 = 400mW,

Pin = 200µW, ∆ = 700 MHz, T = 120◦C. Picture taken from [34].

While in rubidium ([77]) the dependence on this angle has a maximum at 5 mrad,

in potassium it monotonically decreases. This is in accordance with[28] where, in

their configuration of counter-propagating pumps and degenerate FWM, the probe

reflectivity can be considered as an analogue to the probe gain, since both are

affected by atomic susceptibility. Lastly we’ve measured the dependence of the

probe and the conjugate gains on the pump power (figure 32).

We found that the lowest pump intensity, at which we were able to detect the

conjugate beam, is about 10 W cm−2 corresponding to laser power of ≈100mW.

This, relatively low, laser power can easily be attained with conventional lasers

diodes. On the other side we were able to measure even higher gains (96 for the

conjugate, 73 for the probe) at a pump intensity of 51 W cm−2 but the laser becomes

unstable at high powers. This indicates that further improvements could be made

with even stronger lasers.
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Figure 32: Dependence of the probe (black squares) and the conjugate (red circles) gain on

the pump intensity between the pump and the probe beams. Parameters are Pin = 200µW,

∆ = 700 MHz, ϕ = 2mrad, T = 120◦C. Picture taken from [34].
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4 Slowing short light pulses in hot potassium va-

por

For the investigation of slowing short light pulses we have used the double-Λ scheme

realized on the D1 line of potassium as explained in section 3.2. as our slowing

medium. We have also used the same laser system (section 3.3) , frequency calibra-

tion (section 3.4.1) , technique for two-photon detuning scanning (section 3.4.2)

and potassium vapor cell and heating system (section 3.4.3) as for the four wave

mixing research. The experimental setup (section 3.4) is slightly modified in or-

der to make the research of slowing light pulses viable and is presented in the next

section.

4.1 Experimental setup

Figure 33: Scheme of experimental setup for slowing of short light pulses. BS - beam

splitter, PBS - polarization beam splitter, M - mirror, FM - flip-mirror, FC - fiber coupler,

AOM - acousto-optic modulator, L - lens, λ/2 - lambda-half wave plate, λ/4 - lambda-

quarter wave plate, PD - photo diode, EOM - electro-optic modulator
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The main difference from the setup in section 3.4 is adding the electro-optic

(EOM) modulator after the second AOM. We use fiber coupled LiNbO3 electro-

optic modulator, manufactured by EO-SPACE, model : AZ-0K5-10-PFU-PFU-780-

S (appendix z). More detailed charasteristics of the EOM are given in subsection

4.1.1. EOM is followed by a polarizer. By applying Gaussian voltage signals from

the signal generator to the EOM we were able to create Gaussian polarization pulse

in the plane of the polarizer. The polarizer transforms this signal to the Gaussian

intensity pulse (see 4.1.2) The pulse peak power of the Gaussian pulse was 20µW.

For the reference pulse, a fraction of the probe pulse was picked by a polarization

beam splitter and detected before the vapor cell by an avalanche photodiode (see

4.1.3) . We used pump with intensity of 200 mW and polarization orthogonal to

the probe beam. The waist of the pump and the probe are, as before, 1.05 mm and

0.8 mm, respectively. These two beams intersect at the constant angle of 3 mrad

inside the vapor cell. The cell temperature was 1200C. Probe and conjugate pulses

are detected by two PIN photodiodes.

4.1.1 Electro-optic modulator

As mentioned we’ve used AZ-0K5-10-PFU-PFU-780-S electro-optical modulator man-

ufactured by EO-SPACE (see Apendix B). The modulator has the structure of

Mach-Zender interferometer with phase modulator in one branch (section 2.8). Ac-

tive medium of the modulator is lithium-niobate (LiNbO3) The crystal is cut along

its z axis (z-cut [81]) which also is the axis of light propagation. The refractive index

for x and y axis is the same - nO. Advantage of z-cut crystals is that they are less

sensitive to photorefractive effect (the phenomena of changing of index of refraction

with temperature ([81])). Namely index of refraction along x and y axes is the same

(nO) and the change of that index with temperature dnO/dT is also the same so the

uncontrolled change of phase between two interferometer branches that originates

from fluctuation of index of refraction between these two axes is minimized. In order

to measure EOM’s characteristics we’ve set up a simple experimental scheme given

in figure 34.
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Figure 34: Scheme of experimental setup for EOM characteristics determination. P1, P2

polarizers, BS1, BS2 - beam splitters, M1, M2, M3 - optical power meters λ/2 - lambda-

half wave plate, FC1, FC2 - fiber couplers, SMF - single mode polarization maintaining

optical fiber, RF - RF signal generator, DC - DC source, EOM - electro-optic modulator,

PD - photo diode, PPP - plan-parallel plate, OSC - oscilloscope.

Vπ measurement As mentioned in section 2.8 Vπ is the DC voltage that

generates a phase shift of π when applied to the EOM. In order to determine this

quantity we’ve measured the dependence between DC voltage applied to the EOM

and output laser intensity using scheme presented in figure 34. Experimental results

are presented in figure 35.

Theoretically the dependence is given by the squared harmonic function (126)

so we’ve fitted the results with this function. The fit was done using Origin Pro

software. We’ve also presented the results of the fit in table 9.

From the table we see that we’ve got very good match between theoretical de-

pendence and experimental results as seen from adjusted r-square of 0.9787. The
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Figure 35: Dependence of EOM output light beam power and DC voltage applied to the

EOM

Table 9: Dependence of EOM output light beam power and DC voltage applied to the

EOM

period of the fitted function is the half of the voltage Vπ. Then from the table 3 we

read the value for Vπ:
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Vπ = 1.60± 0.02V (139)

The measured value deviates from the the value given in the manufacturer’s speci-

fication by 0.1V which underlines the need for this measurement.

The assessment of EOM’s speed EOM’s speed can in this context be

defined as how fast the EOM reacts when a voltage is applied. In other words

how fast the index of refraction in the EOM’s medium changes when the voltage

is applied to its sides. To investigate this we’ve deployed RF signal generator for

fast signal generation and a fast photodiode for measurement (figure 34). The two

signals were monitored using an oscilloscope. In figure 36 we can see the results of

the measurement with 5 MHz signal.

Figure 36: Time dependence of photodiode signal and voltage applied to the EOM. The

frequency of the voltage iz 5 MHz
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We can notice that there is a delay between the voltage applied to the EOM and

the signal picked up by the photodiode. In order to investigate the reasons for this

delay we’ve adjusted the DC voltage on the EOM to achieve zero output intensity

and then excited the EOM with single voltage pulse. The results are shown in figure

37.

Figure 37: Time dependence of photodiode signal and single voltage pulse applied to the

EOM.

First we can see that there is a delay between the beginning of the rise of voltage

and photodiode signal. The photodiode signal is late for about 10 ns. This difference

is present because of the finite time of signal propagation through cables and BNC

connectors (The cable for photodiode signal was around 1.5 meters longer than

the cable carrying EOM voltage. Since the speed of signal in the copper wire is

around 200000 m/s we have a difference about 7.5 ns between the two signals . We

should also account for additional time needed for photodiode signal amplification,

filtering, and other electronic manipulation which brings us close to the measured
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difference of 10ns. It is important to note that this delay isn’t caused by the EOM’s

speed. Next let’s observe that there is a difference between the rise time of voltage

and photodiode signal of about 1 ns (voltage rise time is 4.2 ns and photodiode

signal rise time is 5.2 ns). This difference can be attributed both to the speed of

the photodiode (as mentioned the speed of the photodiode is 12 GHz) and to the

speed of the EOM. This experimental setup alone isn’t sufficient for making this

differentiation but since the difference of 1 ns is of the magnitude of experimental

error for slow light measurement we haven’t further investigated this matter. The

conclusions made at this stage were later incorporated for the calibration of slow

light measurements (section 4.1.3)

4.1.2 Generation of short light pulses

As previously mentioned in section 4.1 EOM is used for generation of short light

pulses. In order to examine the features of generated short light pulses we again

used the setup given in figure 34 with one modification: instead of RF generator

we put programmable pulse generator (Metrix GX5000-MoD). This generator is

capable of producing rectangle signals with widths down to 5ns and rise times below

1ns. It is also possible to set a pause between the pulses to up to two seconds.

Using rectangle signals directly is not suitable for slow light measurements. Voltage

rectangle signals would result in light rectangle signals in time-domain. Spectrum

of rectangle signals is sinc function which is unbounded in frequency domain ([87])

. Spectral components which are far from the window of high dispersion don’t

experience slowing and the net effect of this is the broadening (in time domain)

of the light pulse which is the unwanted effect. Having light pulses which have

Gaussian shape in time domain are a better choice. Fourier transform of Gaussian

is also a Gaussian so the spectrum of Gaussian pulses in time are also Gaussian.

This spectrum is bounded and we have less of spectral components far from the high

dispersion window and hence the broadening is lower.

In order to produce the Gaussian voltage signals from rectangle signals we have

used Gaussian filters. Filters were made in the electronics laboratory of the Pho-

tonics Center by Milan Minic. Schematics are given in Appendix ZBLJ. Filters are
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suited for producing Gaussian pulses with 20ns, 40ns, 80ns and 120ns full width

half maximum (FWHM) . These signals are then brought to the EOM and used for

light modulation. Modulated light was detected by photodiode and analyzed using

oscilloscope. An example of modulated light pulse and its Gaussian fit are presented

in figure 38.

Figure 38: Gaussian fit and the light pulse modulated by Gaussian voltage signal. Signal

(blue dots) was averaged over 500 samples. Gaussian fit is given in red.
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In order to check whether the modulated light pulses have Gaussian form we’ve

performed Gaussian fit using LMFIT library for Python ([88]). Results are presented

in table 10.

Table 10: Statistics for Gaussian fit of the light signal modulated with Gaussian voltage

signal

Looking at the chi-square statistics and the confidence levels of Gaussian function

parameters we can see that the fit is excellent and we can regard our light pulses

as Gaussian in time. We also see that the FWHM of the fit is 75ns and we will use

this value as our FWHM of light pulse.

Gaussian fits for 20ns, 40ns and 120ns were also performed and the results were

equally good and due to similarity are not presented here.

4.1.3 Detection

Analog to the CW case we now have three type of pulses; reference, amplified probe

and newly generated conjugate pulses. These pulses were detected by an avalanche

and two PIN photo diodes, respectively. Due to very low intensity of the reference

pulses we’ve used Si avalanche photo diode (APD) Hamamatsu S12023-10 for its

detection. The APD was biased with 160 V which provided the gain of 100 and the

bandwidth of 600 MHz. For amplified probe and conjugate pulses, two identical Si

PIN photodiodes Hamamatsu S5973-02 were used. The Si PIN photodiodes were

biased with 9 V providing the bandwidth of 1.4 GHz. In all cases the photo current
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was fed to 50Ω load and DC coupled to the oscilloscope. Each photodiode had

enough bandwidth for detection of pulses in the duration range 20-120 ns that was

used in the experiment.

4.2 Results and discussion

4.2.1 Definition of measured quantities and the initial delay

In this subsection we will define quantities which are important in the context of

slowed light pulses.

In order to quantify the effects of the dispersion medium on light pulses we need

to have a reference light pulse. The reference pulse represents the behavior of light

pulse without the medium and, as its name suggests, gives a reference against which

the effects of amplifying medium are measured. As already mentioned in 4.1 this

is achieved by picking a fraction of the probe pulse at the 50:50 polarization beam

splitter before the vapor cell. In this way the probe and the reference pulse have

the same shape in time. Also by picking the half of the probe beam we also have

the intensity reference that would help us quantify the amplification effects of the

FWM medium.

As in the CW case we have the notion of the gain which is the measure of probe

and conjugate amplification. In this case the gain is defined as ratio of probe or

conjugate peak intensities and reference peak intensity:

Gp =
Ip
Ir

(140)

Gc =
Ic
Ir

(141)

where Gp and Gc stand for the probe and the conjugate gain respectively and Ip, Ic

and Ir stand for probe, conjugate and reference peak intensity respectively.

The main quantities that describe slowing of optical pulses are the fractional

delay and the fractional broadening.

Fractional delay is defined as the ratio between absolute delay, which is the time

difference between the probe (or the conjugate) peak and reference peak, and refer-
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Figure 39: The appearance of typical pulses order and basic definitions.

ence pulse width. If we take a look at figure 48 that would be the ratio between the

’Delay’ and the ’Width R’. Fractional delay gives us information about the delay

of the light pulse normalized to the width of the reference pulse and should be as

large as possible. Likewise, fractional broadening is defined as the ratio of the probe

(or the conjugate) pulse width to the reference pulse width, ratio of ’Width P’ and

’Width R’ in figure 48. This parameter is informative about the broadening of the

slowed light pulse and should be as close as possible to one.

To represent the real situation in the experiment the definition of absolute (and

consequently fractional) delay has to be modified. As mentioned previously the

reference beam is detected before the vapor cell. To have a proper reference we need

to take into account the longer path traversed by the probe and conjugate before

the detection and the effects of additional beam splitters and vapor cell windows.

Also as mentioned in 4.1.1 different lengths of cables and type of connectors can

introduce additional delays. To remedy these effects we’ve measured the initial

delay between the reference and the pulse probe by measuring the delay between

the two pulses with vapor cell on room temperature. On room temperature the

concentration of potassium atoms is so small that the effects of FWM are negligible

and can be regarded as non existent. So in this conditions we can measure the

amount of delay unrelated to the effects of dispersion medium (figure 40).
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Figure 40: Measurement of the initial absolute delay between the probe and the reference

pulse

Initial absolute delay between the probe and the reference is 11ns. This amount

of initial delay is present in all the following measurements of the delay and is

subtracted in all results so we could quantify the effects of FWM medium only.

4.2.2 Results

Typical measurements for input pulse duration of 120 ns and 20 ns for delayed

amplified probe and conjugate pulses are shown in figure 41 a) and b). These pulse

durations are extremal in our case and illustrate the fastest and the slowest signal

intensity variation in the experiment. Due to similarity we are not showing typical

measurements for 40ns and 80ns pulses.

Let’s look at the results more closely. In figure 41 a) we have presented the

slowing of 120ns wide reference pulse. Results were obtained by averaging 1000

measurements. Here the one-photon detuning was set to ∆ = 1 GHz and two

photon detuning was kept at resonance, δ = 0 MHz. We’ve also normalized all the
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Figure 41: Example of the slowing of optical pulses by FWM in K vapor. Conjugate and

probe are Gaussian. The waveforms are obtained upon 1000 averaged measurements and

the peaks are normalized. (a) τ = 120 ns, δ = 0 MHz, ∆ = 1 GHz (b) τ = 20 ns, δ= 0

MHz, ∆ = 0.7 GHz. Other parameters were kept constant for both measurements: T =

120oC, ∆ = 1 GHz, Ipump = 200 mW, Iref = 20µW, Θ = 3mrad. Picture taken from [75]

signals so their time characteristics would become more visible. In this particular

example we have observed amplified probe and conjugate pulse, both with Gaussian

shape. The gain of the probe pulse was 16 and the measured absolute delay was

124 ns. This gives fractional delay of 1.1 and the fractional broadening was 1.2.

The conjugate pulse had fractional delay of 0.56 and fractional broadening of 1.05

respectively. The emergence of the peak of the conjugate pulse before the peak

of the amplified probe was also observed in rubidium ([69]) and sodium ([74]) was

confirmed by this measurements for the case of potassium as well.

In figure 41 b) the typical measurement for the 20ns pulse is shown. Now the

photon detuning was set to ∆ = 700 MHz and two photon detuning was again at

resonance δ = 0 MHz. The shapes of amplified probe and newly created conjugate

pulse were again Gaussian. Like in the 120ns pulse case the conjugate pulse had

smaller absolute delay than the amplified probe pulse. The gain of amplified probe

was 14.5, while fractional delay and fractional broadening were 3.7 and 3.2 respec-

tively. For conjugate we have measured 10 for the gain and 2.7, 2,7 for fractional

delay and fractional broadening respectively. It should be noted that the separa-

tion between probe and conjugate at the exit of the cell can be tuned by choosing
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different experimental parameters.

The Gaussian shape of the exiting pulses is not always retained (figure 42). For

some choice of parameters pulses become distorted and the measurements of pulse

width, delay and broadening become impossible. According to [69] the distortion

of the waveform could come from complex dynamics of the interplay between para-

metric amplification and Raman absorption. Balance between losses and gains of

probe pulse are critical for temporal shapes of probe and conjugate pulses, which

means that the range of δ in which we would retain Gaussian shape of the pulses

will be different for different ∆ and for different potassium densities. Also, note that

the gain of the amplified probe pulse in figure 42 is around 0.9 which is very low in

potassium. Due to small leakage of the light through the EOM and parasitic differ-

entiation of the signal in the detection and acquisition circuits the false undershoot

at the times larger than 320 ns (figure 42)) becomes visible since it is magnified in

the normalization procedure.

Figure 42: Example of the slowing of optical pulses by FWM in K vapor. Gaussian

shape of probe and conjugate is lost.The waveforms are obtained upon 1000 averaged

measurements and the peaks are normalized. τ = 120ns, δ = -4 MHz, ∆ = 1 GHz, T =

120oC, ∆ = 1 GHz, Ipump = 200 mW, Iref = 20µW, Θ = 3mrad.Picture taken from [75]

In order to investigate the influence of two-photon detuning we’ve scanned δ from

-20 MHz to 10 MHz with the step of 2 MHz for all of our measurements (figure 43).

In general for the values of δ on the edges of this range the pulse profile becomes

distorted and loses its Gaussian shape.This is the already mentioned case where
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quantities of interest cannot be measured (figure 43 for δ = -10, 4 and 6 MHz).

Figure 43: Varying two-photon detuning δ. As before the waveforms are obtained upon

1000 averaged measurements and the peaks are normalized. The following information is

provided on the graphs: Dp - probe delay, Dc - conjugate delay, Wp - probe FWHM, Bp

- probe broadening, Bc - conjugate broadening, Gp - probe gain, Gc - conjugate gain, Fp

- probe fraction delay, Fc - conjugate fractional delay. Constant parameters: τ = 120 ns,

∆ = 1 GHz, T = 120oC, Ipump = 200 mW, Iref = 20µW, Θ = 3mrad.

In order to have a better overview we have plotted the dependence of fractional

broadening, fractional delay and gain for probe and conjugate pulse as a function of

δ for ∆ = 1 GHz.(figure 44)

The dependence of fractional broadening and fractional delay is nearly constant in

the interval of two-photon detuning for which we have nonzero gain. The best trade-

off between fractional delay and fractional delay was achieved at δ = 0 where we

had the fractional delay of 1.1 and fractional broadening of 1.2. The gain at this

δ is 16 which is close to a half of maximum gain of 26 (achieved for δ = 2 MHz)

for this choice of experimental parameters. Our results are qualitatively different in

comparison with results obtained in rubidium [69] and sodium [74]. In the case of
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Figure 44: Fractional delay, fractional broadening and gain dependence on δ for (a) am-

plified probe (b) conjugate. Parameters: τ = 120 ns, ∆ = 1 GHz, T = 120oC, Ipump =

200 mW, Iref = 20µW, Θ = 3mrad. Picture taken from [75]

rubidium the delay is also largest in the vicinity of the bare state 2-photon resonance.

The difference is that dependence between delay and two-photon detuning is sharp

and the delay drops down quickly as the δ moves away from resonance. In the case

of sodium although the dependence of fractional delay and fractional broadening on

pump Rabi frequency (i.e. intensity) is not depicted in [74] we can still conclude

that the gain and the delay are in trade-off relation in Na since both gain and

delay are monotonic functions of pump Rabi frequency. In other words, for sodium

vapor one can say that higher the gain, smaller the delay and and vice versa while

in potassium we do not see such strong dependence of delay (or broadening) on

gain. This difference might arise from the fact that potassium, unlike rubidium

and sodium, has smaller hyperfine splitting than the Doppler width and hence the

condition, set in [69], ∆+ HFS ≫ ∆ is not fulfilled in the case of potassium.

We have systematically presented the results of slowed optical pulses in alkali

vapors investigated so far in table 11. We conclude that the results in potassium

are better or comparable to those in rubidium and sodium for similar experimental

conditions and similar length of the optical pulses.

If the information is carried by a train of optical pulses it becomes apparent

that the amount of information transferred in time would be higher if we would

have shorter optical pulses. So it favorable to transfer information with the short-
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Table 11: Summary of the results for slowing of short optical pulses via FWM in Rb, Na

and K. Table taken from [75].

est possible optical pulses while retaining large fractional delays accompanied with

small fractional broadening. In order to find the shortest input pulse duration with

those characteristics, we have performed the measurements of fractional delay and

fractional broadening for different pulse durations (figure 45).

Figure 45: Dependence of fractional broadening and fractional delay on incident pulse

duration in slow light process via FWM in K vapor for (a) amplified probe (b) conjugate

pulses. Parameters: δ = 0 MHz, ∆ = 1 GHz, T = 120oC, Ipump = 200 mW, Iref = 20µW,

Θ = 3mrad. The red line represents the value with no broadening. Picture taken from

[75].
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As seen from figure 45 we’ve performed measurements with 20ns, 40ns, 80 ns and

120ns Gaussian pulses. In general, for shorter light pulses we observe that fractional

delay and fractional broadening are increase simultaneously. The broadening of

the pulses with shortening of their duration can be understood in the following way

([89]). The shorter pulses in time domain are wider in the frequency domain i.e. they

are spectrally broader. Because of this fact larger number of Fourier components

of the optical pulse get slowed down differently (due to the dispersive medium and

the fact that refractive index varies with frequency) which manifests as broadening

in time domain. An alternative explanation can be given using equations for group

velocity and group delay given in [90] characterizing the slow light effect related

to the EIT effect. The group delay is linearly proportional to optical depth and

inversely proportional to the (EIT) control (the probe in our case) intensity. Since

the latter two parameters are fixed when the the pulse duration is decreased, the

group delay should be fixed and thus the fractional broadening will increase when

decreasing input pulse duration.

As already mentioned one of the possible applications of slow light would be in

optical delay lines - devices capable of producing arbitrary delays of optical signals.

For this application it is necessary that the fractional delay is one or higher. In this

sense the pulse duration of 120 ns has the best performances in terms of delay and

broadening (figure. 45). We see that for this pulse duration we have only about 20%

of widening while the fractional delay is above one which makes the pulse duration

of 120 ns best suited for usage in potassium medium.

One of the more important parameters in this research is the pump intensity

used in the experiment. It is favorable to use the smallest possible pump intensity

for the achievement of the wanted slow light properties. Apart from energy con-

sumption reduction when using lower pump intensities low intensities are desirable

from perspective of using other, less expensive, types of lasers. To that end we’ve

measured the dependence of fractional delay and fractional broadening on pump

intensity (figure 46). All of the other parameters were kept constant.

We see that unlike in sodium vapor ([74]) fractional delay and fractional broadening

in our case don’t depend strongly on the pump intensity, although the trend is the
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Figure 46: Dependence of fractional broadening and fractional delay on pump intensity

in slow light process via FWM in K vapor for (a) amplified probe (b) conjugate pulses.

Parameters: τ = 80ns, δ = 4 MHz, ∆ = 1.3 GHz, T = 120oC, Iref = 20µW, Θ = 3mrad.

Picture taken from [75]

same: fractional delay and fractional broadening decrease as the pump intensity

increases. We also have a very good performance in the sense of ratio between

the fractional delay and fractional broadening over wide range of pump intensities.

Intensities for which we still have good values of fractional delay and fractional

broadening are achievable with diode lasers which opens the door for usage of this

types of lasers in this kind of research.

The measured dependencies on two-photon detuning and the pump intensity are

rather modest to almost uniform(figures 44 and 46). These dependencies are in

contrast to those measured in cases of rubidium ([69]) and sodium ([74]). Rubid-

ium and sodium are very similar quantum systems with similar fine and hyperfine

structures and quantum numbers associated. Also the experimental conditions are

almost the same (geometry, laser intensities, temperatures, etc). We conclude that

the smallest ground state hyperfine splitting among all stable isotopes of alkalis that

we have for 39K and a large Doppler broadening that is approximately as twice as

large as the hyperfine splitting at our experimental temperatures (rubidium and

sodium have larger hyperfine splittings than Doppler widths) are behind the reason

of the discrepancy in the results found in these works. However there is a need for

development of detailed theoretical models for light propagation in hot potassium
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vapor which would take into account all the specifics of potassium like aforemen-

tioned ground state hyperfine splitting, Doppler broadening at exact experimental

temperatures, dipole matrix elements and so on. One should also take care with

approximations used in the model since they could be valid for one type of atoms

but not for other.
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5 Conclusion

The research presented in this thesis was set out to explore the possibility of achiev-

ing and describing an optical four-wave mixing in hot potassium vapor, and slowing

of short light pulses using this phenomena. To that end we have assembled the

experimental setup which could both be used for saturation spectroscopy and ob-

serving four-wave mixing with co-propagating pump and probe beams. Saturation

spectroscopy was used for identification of potassium spectroscopic lines, frequency

calibration of the laser and for determining the frequency drift of the laser. We have

also build the heating system for the potassium cell based on hot air and equipped

with temperature control system. For fine frequency scanning we’ve deployed acous-

tooptic modulator in double-pass configuration.

Using this setup we were able to observe non-degenerate FWM in hot potassium

vapor at the D1 line using co-propagating pump and probe beams and a double-Λ

coupling scheme. To the best of our knowledge this is the first observation of this

phenomena in potassium vapor. After the initial successful observation we’ve pro-

ceeded with the investigation of parameters space in search of best possible efficiency

of the FWM process. The efficiency is measured by the amplification or the gain of

the amplified probe and the newly created conjugate beam.

First we’ve investigated the influence of two-photon detuning δ for four different

one-photon detunings ∆ (400 MHz, 700 MHz, 1000 MHz and 1300MHz) with all the

other experimental parameters kept constant. Theoretical and experimental works

in other metallic vapors indicated that a small δ is needed to compensate AC-Stark

light shift. We’ve confirmed this in the case of potassium as well by observing

maximum gains at non-zero values of δ. It is also suggested that the AC-Stark light

shift decreases with one-photon detuning ∆ which was also experimentally observed

by the smaller δ needed for achieving maximal gain at larger ∆.

The influence of one-photon detuning can be seen through prism of two compet-

ing processes. One being the FWM which efficiency increases when we are closer

to the one-photon resonance ie when ∆ decreases. Second being one photon ab-

sorption which also increases with increasing ∆. The best trade-off is found on the
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edge of Doppler profile at ∆ = 700 MHz. At this one-photon detuning and for δ =

-6 MHz (with pump power P0 = 400 mW, probe seed power Pin = 200 µW, vapor

temperature T = 120◦C (≈ 3× 1012 atoms/cm3), angle between the pump and the

probe ϕ = 3 mrad) we’ve found the highest gain of the conjugate beam Gc = 82

(The probe gain for the same parameters was Gp = 58). This is one of the largest

gains achieved in alkali vapors.

We’ve also explored the influence of temperature on the FWM efficiency. With

raising temperature the concentration of atoms in the vapor also raises which leads

to the increase of FWM cross-susceptibilities χcp and χpc. On the other hand,

large susceptibilities lead to large values of the refractive index and its transverse

gradient that cause beam self-focusing and beam filamentation which hinders the

correct measurement of the beams intensities. In our work we have determined

the maximal temperatures for which the measurement is possible for wide range of

one-photon detunings ∆ (500 MHz, 750 MHz, 1000 MHz, 1500 MHz, 2000 MHz,

2500MHz). We’ve showed that the maximal temperature in this sense is directly

proportional to the one-photon detuning which is in accordance to the fact that

dispersion and one-photon detuning are inversely proportional. For the values of T

= 140◦C and ∆ = 1500 MHz we’ve found the highest probe gain Gp = 63 (Gc = 69

for the same set of parameters)

Lastly we’ve investigated the FWM efficiency versus the angle between the pump

and the probe beam and versus the pump intensity. Unlike in other alkali vapors

we’ve found that dependence of the probe and the conjugate gain on the angle

between the pump and the probe is monotonically decreasing. On the other side

the measured dependence on the pump power was monotonically increasing as ex-

pected. The lowest pump power at which we were able to detect the conjugate

beam was around 100 mW. This laser power is achievable with (cheaper and easily

maintainable) diode lasers which opens the possibilities of using them in this kind

of research. We were also able to measure even higher gains (96 for the conjugate,

73 for the probe) at pump powers over 500 W but due to the unstable operation

of the laser at this power we were not confident enough about the accuracy of our

measurement. Nevertheless this indicates that further improvements could be made
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with using stronger pump powers.

The observation the optical FWM in potassium vapor might be significant in mul-

tiple ways. High gains obtained indicate large amount of relative intensity squeezing

which is needed for precise spectroscopic sub-shot-noise measurements. The exis-

tence of relative intensity squeezing is the necessary condition for the existence of

entanglement between the pump and the probe photons. High gains are also di-

rectly proportional to the amount of the entanglement which could make potassium

vapor one of the best sources of continuous entangled light. High nonlinearities are

followed by large dispersion which is responsible for the another important phenom-

ena in photonics - slow light. Slow light was the subject of the second part of the

research presented in this thesis.

For the investigation of slowing of short light pulses in hot potassium vapor the

experimental setup was modified by the introduction of electro-optic modulator.

After detailed examination of EOMs characteristics the EOM was deployed for the

purpose of creating the Gaussian light pulses of the following length - 20ns, 40ns,

80ns and 120ns. The aim of the research was to determine the influence of different

experimental parameters to the slowing of short light pulses and in the same time

to find the values of these parameters at which we would have the optimal trade-off

between the fractional delay and the fractional broadening.

First we’ve investigated the influence of two-photon detuning δ while keeping

the other parameters constant. Short light pulses kept their Gaussian profile only

in the narrow interval around the two-photon resonance (in the order of few tens of

MHz). Outside this interval the Gaussian shape was lost and the measurement of

the pulse delay and width became impossible. The distortion of the waveform could

come from complex dynamics of the interplay between parametric amplification and

Raman absorption. Also the balance between losses and gains of probe pulse is

important for temporal shapes of light pulses, which means that the precise range of

δ in which we have Gaussian shape of the pulses depends on one-photon detuning,

temperature (density) and pump intensity which we’ve also observed. Due to the

fact that the probe pulse experiences higher dispersion this pulse is more slowed

than the conjugate pulse. As a consequence the probe pulse experiences larger
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spectral broadening than the conjugate pulse. Unlike in other alkali vapors the

dependence of fractional broadening and fractional delay on two-photon detuning is

rather flat. The difference might stem from the fact that in potassium, unlike the

other investigated alkalis, the ground state hyper fine splitting is smaller than the

Doppler width so the condition ∆+HFS ≫ ∆ set in the seminal paper [16] is not

fulfilled. Additional theoretical work should be done in order to understand this

behaviour clearly.

The best trade-off between the fractional delay and fractional broadening was

found for the following parameters: δ = 0 MHz, τ = 120 ns, ∆ = 1 GHz, T =

120oC, Ipump = 200 mW, Iref = 20µW, Θ = 3mrad. We’ve measured the fractional

delay of 1.1 with fractional broadening of 1.2. The probe gain was 16. This result

is better than measurements performed in rubidium vapor and comparable to those

achieved in sodium vapor.

Next we’ve performed the measurements for several different pulse lengths - 20ns,

40ns, 80ns and 120ns. In general the fractional delay and the fractional broadening

increase with shortening of the temporal length of the light pulse. The shorter pulses

in time domain are wider in the frequency domain so the larger number of Fourier

components of the optical pulse get slowed down by different amount which leads

to broadening in time domain. From the perspective of transfer of information by

light and optical delay lines specifically, time broadening is an unwanted effect. In

that sense the pulse length of 120ns proved to be the best choice since there is only

about 20% of widening while the fractional delay is above one.

Finally the influence of pump intensity was also studied. Again contrary to the

case of rubidium and sodium we’ve obtained weak dependencies of fractional delay

and fractional broadening on the pump intensity although the trend is the same -

they decrease together with decreasing pump intensity. This result again shows that

it is possible to investigate these kind of effects using conventional, less expensive

and less power consuming diode lasers.

In our work we have proved that hot potassium vapor is an interesting medium

for non-linear and quantum optical research. High gains achieved in our measure-

ments indicate the possibility of generating relative intensity squeezed light with
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high amount of squeezing. This could give way to high precision, below standard

quantum noise spectroscopic measurements around D1 and D2 lines of potassium.

Secondly the existence relative intensity squeezed light is a necessary condition

for existence of quantum entangled light. Entangled light is a resource for the

very promising field of quantum informatics and sources of continuous entangled

light are becoming more important due to their robustness, smaller price and lesser

complexity than the sources of entangled single photons. In that sense the next

step is the creation and research of continuous light created by FWM in potassium

vapor.

Also the very good results of slowed light pulses achieved in potassium indicate

that the future theoretical insights about the core mechanism of this improved per-

formance could lead to new ways of generating slow light. Slowing systems with

gains are important for qubits manipulation and this work highlights hot potassium

vapor as medium of choice for this application.
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