412 Chapter 10. Minimization or Maximization of Functions

if (i '= ilo) {
for (j=1;j<=ndim;j++)
plil [j1=psum[j]1=0.5*(p[i]l [j1+p[ilol [31);
y [i]=(*funk) (psum) ;

}
*nfunk += ndim; Keep track of function evaluations.
GET_PSUM Recompute psum.
}
} else --(*nfunk); Correct the evaluation count.
} Go back for the test of doneness and the next
free_vector(psum,1,ndim); iteration.

#include "nrutil.h"

float amotry(float **p, float y[], float psum[], int ndim,
float (*funk) (float []), int ihi, float fac)
Extrapolates by a factor fac through the face of the simplex across from the high point, tries
it, and replaces the high point if the new point is better.
{
int j;
float facl,fac2,ytry,*ptry;

ptry=vector(l,ndim) ;
fac1=(1.0-fac)/ndim;
fac2=facl-fac;
for (j=1;j<=ndim;j++) ptry[jl=psum[jl*facil-pl[ihi] [j]l*fac2;
ytry=(xfunk) (ptry); Evaluate the function at the trial point.
if (ytry < y[ihil) { If it’s better than the highest, then replace the highest.
y[ihil=ytry;
for (j=1;j<=ndim;j++) {
psum[j] += ptry[jl-plihi] [j];
plihil [j1=ptry[jl;
}
}
free_vector(ptry,1,ndim);
return ytry;

CITED REFERENCES AND FURTHER READING:
Nelder, J.A., and Mead, R. 1965, Computer Journal, vol. 7, pp. 308-313. [1]
Yarbro, L.A., and Deming, S.N. 1974, Analytica Chimica Acta, vol. 73, pp. 391-398.

Jacoby, S.L.S, Kowalik, J.S., and Pizzo, J.T. 1972, Iterative Methods for Nonlinear Optimization
Problems (Englewood Cliffs, NJ: Prentice-Hall).

10.5 Direction Set (Powell’s) Methods in
Multidimensions

We know (§10.1-§10.3) how to minimize a function of one variable. If we
gtart at a point P in N-dimensiona space, and proceed from there in some vector

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

10.5 Direction Set (Powell’'s) Methods in Multidimensions 413

direction n, then any function of NV variables f(P) can be minimized aong the line
n by our one-dimensiona methods. One can dream up various multidimensional
mi nimization methodsthat consist of sequences of such lineminimizations. Different
methods will differ only by how, at each stage, they choose the next direction n to
try. All such methods presume the existence of a*“black-box” sub-algorithm, which
we might call 1inmin (given as an explicit routine a the end of this section), whose
definition can be taken for now as

linmin: Given as input the vectors P and n, and the
function f, find the scalar \ that minimizes f (P + An).
Replace P by P 4+ An. Replace n by An. Done.

All the minimization methods in this section and in the two sections following
fal under this genera schema of successive line minimizations. (The algorithm
in §10.7 does not need very accurate line minimizations. Accordingly, it has its
own approximate line minimization routine, 1nsrch.) In this section we consider
a class of methods whose choice of successive directions does not involve explicit
computation of thefunction’sgradient; the next two sections do require such gradient
caculations. You will note that we need not specify whether 1inmin uses gradient
information or not. That choice is up to you, and its optimization depends on your
particular function. You would be crazy, however, to use gradientsin 1inmin and
not use them in the choice of directions, since in this|atter role they can drastically
reduce the total computational burden.

But what if, inyour application, cal cul ation of thegradient isout of the question.
You might first think of this simple method: Take the unit vectorse;, e;,...ey asa
set of directions. Using 1inmin, move aong the first direction to its minimum, then
fromthere along the second direction to its minimum, and so on, cycling through the
wholeset of directionsas many timesasnecessary, until thefunction stopsdecreasing.

This simple method is actually not too bad for many functions. Even more
interesting iswhy itis bad, i.e. very inefficient, for some other functions. Consider
a function of two dimensions whose contour map (level lines) happens to define a
long, narrow valley at some angle to the coordinate basi s vectors (see Figure 10.5.1).
Then the only way “down the length of the valley” going along the basis vectors at
each stage is by a series of many tiny steps. More generdly, in N dimensions, if
the function’s second derivatives are much larger in magnitude in some directions
than in others, then many cycles through al N basis vectors will be required in
order to get anywhere. This conditionisnot al that unusual; according to Murphy’s
Law, you should count on it.

Obviously what we need is a better set of directionsthan thee;’s. All direction
set methods consist of prescriptions for updating the set of directions as the method
proceeds, attempting to come up with a set which either (i) includes some very
good directions that will take us far along narrow valleys, or else (more subtly)
(i) includes some number of “non-interfering” directions with the special property
that minimization along one is not “spoiled” by subsequent minimization along
another, so that interminable cycling through the set of directions can be avoided.

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

414 Chapter 10. Minimization or Maximization of Functions

start

Figure 10.5.1. Successive minimizations along coordinate directionsin along, narrow “valley” (shown
as contour lines). Unless the valley is optimally oriented, this method is extremely inefficient, taking
many tiny steps to get to the minimum, crossing and re-crossing the principal axis.

Conjugate Directions

This concept of “non-interfering” directions, more conventionally called con-
jugate directions, is worth making mathematically explicit.

First, note that if we minimize a function along some direction u, then the
gradient of the function must be perpendicular to u at the line minimum; if not, then
there would still be a nonzero directional derivative along u.

Next take some particular point P as the origin of the coordinate system with
coordinates x. Then any function f can be approximated by its Taylor series

JIORERICIRE i S o i M
B - 8131 ! 2 . 8$18$J v
: i (105.1)
~c¢c—Db-x+ %X~A~X
where
—P) b= -Vfp (Al = 2l (1052)
€= o P K 8$18$J P s

The matrix A whose components are the second partial derivative matrix of the
function is called the Hessian matrix of the function at P.

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

10.5 Direction Set (Powell’'s) Methods in Multidimensions 415

In the approximation of (10.5.1), the gradient of f iseasily calculated as
Vf=A-x—b (10.5.3)

(Thisimpliesthat the gradient will vanish — the function will be at an extremum —
at avalue of x obtained by solving A - x = b. Thisideawe will returnto in §10.7!)
How doesthegradient V f change as we move along some direction? Evidently

§(VF) =A - (6x) (10.5.4)

Suppose that we have moved along some direction u to a minimum and now
proposeto move a ong some new directionv. The condition that motion along v not
spoil our minimization along u isjust that the gradient stay perpendicular to u, i.e,
that the change in the gradient be perpendicular to u. By equation (10.5.4) thisisjust

0=u-6(Vf)=u-A-v (10.5.5)

When (10.5.5) holds for two vectors u and v, they are said to be conjugate.
When the relation holds pairwise for all members of a set of vectors, they are said
to be a conjugate set. If you do successive line minimization of a function along
a conjugate set of directions, then you don’'t need to redo any of those directions
(unless, of course, you spoil things by minimizing along a direction that they are
not conjugate to).

A triumph for a direction set method is to come up with a set of N linearly
independent, mutually conjugatedirections. Then, one pass of N line minimizations
will put it exactly at the minimum of a quadratic form like (10.5.1). For functions
f that are not exactly quadratic forms, it won't be exactly at the minimum; but
repeated cycles of N line minimizations will in due course converge quadratically
to the minimum.

Powell’s Quadratically Convergent Method

Powell first discovered a direction set method that does produce N mutually
conjugate directions. Here is how it goes. Initiaize the set of directions u; to
the basis vectors,

u, =6 i=1,...,N (10.5.6)

Now repeat the following sequence of steps (“basic procedure”) until your function
stops decreasing:

e Save your starting position as Py.

e Fori =1,...,N, move P;,_; to the minimum aong direction u; and

cal this point P;.

e Fori=1,....N —1, set u; <« U;y;.

e Set uy «— Py — Py.

e Move Py to the minimum along direction uy and call this point Py.

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

416 Chapter 10. Minimization or Maximization of Functions

Powell, in 1964, showed that, for a quadratic form like (10.5.1), k iterations
of the above basic procedure produce a set of directions u; whose last & members
are mutually conjugate. Therefore, N iterations of the basic procedure, amounting
to N(N + 1) line minimizations in all, will exactly minimize a quadratic form.
Brent [1] gives proofs of these statements in accessible form.

Unfortunately, there is a problem with Powell’s quadratically convergent al-
gorithm. The procedure of throwing away, at each stage, u; in favor of Py — Pg
tends to produce sets of directionsthat “fold up on each other” and become linearly
dependent. Once thishappens, then the procedure findsthe minimum of thefunction
f only over a subspace of the full N-dimensional case; in other words, it gives the
wrong answer. Therefore, the agorithm must not be used in the form given above.

There are a number of ways to fix up the problem of linear dependence in
Powell’s agorithm, among them:

1. You can reinitializethe set of directionsu; to the basis vectors e; after every
N or N + 1 iterations of the basic procedure. This produces a serviceable method,
which we commend toyou if quadratic convergence isimportant for your application
(i.e., if your functions are close to quadratic forms and if you desire high accuracy).

2. Brent points out that the set of directions can egqualy well be reset to
the columns of any orthogonal matrix. Rather than throw away the information
on conjugate directions aready built up, he resets the direction set to calculated
principal directions of the matrix A (which he gives a procedure for determining).
The calculation is essentialy a singular value decomposition agorithm (see §2.6).
Brent has a number of other cute tricks up his deeve, and his modification of
Powell’s method is probably the best presently known. Consult[1] for a detailed
description and listing of the program. Unfortunately it is rather too elaborate for
us to include here.

3. You can give up the property of quadratic convergence in favor of a more
heuristic scheme (due to Powell) which tries to find a few good directions along
narrow valleys instead of N necessarily conjugate directions. This is the method
that we now implement. (It isalso the version of Powell’smethod givenin Acton (2],
from which parts of the following discussion are drawn.)

Discarding the Direction of Largest Decrease

The fox and the grapes: Now that we are going to give up the property of
guadratic convergence, was it so important after all? That depends on the function
that you are minimizing. Some applications produce functions with long, twisty
valeys. Quadratic convergence is of no particular advantage to a program which
must slalom down the length of avalley floor that twists one way and another (and
another, and another, ... — there are NV dimensions!). Along the long direction,
a quadratically convergent method is trying to extrapolate to the minimum of a
parabola which just isn’t (yet) there; while the conjugacy of the N — 1 transverse
directions keeps getting spoiled by the twists.

Sooner or later, however, we do arriveat an approximately e lipsoidal minimum
(cf. equation 10.5.1 when b, the gradient, is zero). Then, depending on how much
accuracy we require, amethod with quadratic convergence can save us several times
N? extra line minimizations, since quadratic convergence doubles the number of
significant figures at each iteration.

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

10.5 Direction Set (Powell's) Methods in Multidimensions 417

The basic idea of our now-modified Powell'’smethod is still to take Py — Py as
anew direction; itis, after all, theaverage direction moved after tryingall NV possible
directions. For a valey whose long direction is twisting dowly, this direction is
likely to give us agood run along the new long direction. The change is to discard
the old direction along which the function f made its largest decrease. This seems
paradoxical, since that direction was the best of the previousiteration. However, it
is aso likely to be a major component of the new direction that we are adding, so
dropping it gives us the best chance of avoiding a buildup of linear dependence.

There are a couple of exceptions to this basic idea. Sometimes it is better not
to add a new direction at al. Define

fo= f(Po) fn = f(Pw) fe = f(2PN —Py) (10.5.7)

Here fg isthe function value at an “extrapolated” point somewhat further along
the proposed new direction. Also define Af to be the magnitude of the largest
decrease along one particular direction of the present basic procedureiteration. (A f
is a positive number.) Then:

1. If fg > fo, then keep the old set of directions for the next basic procedure,
because the average direction Py — Py is al played out.

2. 182 (fo —2fx + fr) [(fo — fv) = Af1* = (fo— fr)?Af, thenkeep theold
set of directions for the next basic procedure, because either (i) the decrease along
the average direction was not primarily due to any single direction’s decrease, or
(ii) thereis a substantial second derivative aong the average direction and we seem
to be near to the bottom of its minimum.

Thefollowingroutineimplements Powell’ smethod in theversionjust described.
Intheroutine, xi isthe matrix whose columns are the set of directionsn;; otherwise
the correspondence of notation should be self-evident.

#include <math.h>

#include "nrutil.h"

#define TINY 1.0e-25 A small number.

#define ITMAX 200 Maximum allowed iterations.

void powell(float p[], float **xi, int n, float ftol, int *iter, float *fret,

float (*func) (float [1))
Minimization of a function func of n variables. Input consists of an initial starting point
pll..n]; an initial matrix xi[1..n][1..n], whose columns contain the initial set of di-
rections (usually the n unit vectors); and ftol, the fractional tolerance in the function value
such that failure to decrease by more than this amount on one iteration signals doneness. On
output, p is set to the best point found, x1 is the then-current direction set, fret is the returned
function value at p, and iter is the number of iterations taken. The routine 1inmin is used.
{

void linmin(float p[], float xi[], int n, float *fret,

float (*func) (float []));
int i,ibig,j;
float del,fp,fptt,t,*pt,*ptt,*xit;

pt=vector(1l,n);
ptt=vector(l,n);
xit=vector(i,n);
*fret=(xfunc) (p);
for (j=1;j<=n;j++) pt[jl=pljl;
for (*iter=1;;++(xiter)) {
fp=(*fret);
ibig=0;

Save the initial point.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

418 Chapter 10. Minimization or Maximization of Functions

del=0.0; Will be the biggest function decrease.
for (i=1;i<=n;i++) { In each iteration, loop over all directions in the set.
for (j=1;j<=n;j++) xit[jl=xil[j1[i]; Copy the direction,
fptt=(*fret);
linmin(p,xit,n,fret,func); minimize along it,
if (fptt-(xfret) > del) { and record it if it is the largest decrease
del=fptt-(xfret); so far.
ibig=i;

}
}
if (2.0*%(fp-(*fret)) <= ftol*(fabs(fp)+fabs(xfret))+TINY) {
free_vector(xit,1,n); Termination criterion.
free_vector(ptt,1,n);
free_vector(pt,1,n);
return;
}
if (*iter == ITMAX) nrerror("powell exceeding maximum iteratioms.");
for (j=1;j<=n;j++) { Construct the extrapolated point and the
ptt[jl1=2.0*p[j1-pt[j]; average direction moved. Save the
xit[j1=p[jl-pt[j]; old starting point.
ptljl=pljl;

fptt=(*func) (ptt) ;
if (fptt < fp) {
t=2.0*(fp-2.0*(*fret) +fptt) *SQR(fp- (*fret)-del)-del*SQR(fp-fptt);
if (t < 0.0) {
linmin(p,xit,n,fret,func); Move to the minimum of the new direc-
for (j=1;j<=n;j++) { tion, and save the new direction.
xi[j][ibigl=xi[j][n];
xi[j] [n]=xit[j];

Function value at extrapolated point.

} Back for another iteration.

Implementation of Line Minimization

Make no mistake, there is a right way to implement linmin: It isto use
the methods of one-dimensional minimization described in §10.1-§10.3, but to
rewrite the programs of those sections so that their bookkeeping is done on vector-
valued points P (al lying along a given direction n) rather than scalar-valued
abscissas x. That straightforward task produces long routines densely populated
with “for (k=1;k<=n;k++)" loops.

We do not have space to include such routinesin thisbook. Our 1inmin, which
worksjust fine, isinstead akind of bookkeeping swindle. It constructsan “artificial”
function of one variable called f1dim, which is the vaue of your function, say,
func, along the line going through the point p inthe direction xi. 1inmin calsour
familiar one-dimensiona routinesmnbrak (§10.1) and brent (§10.3) and instructs
them to minimize f1dim. linmin communicates with f1dim “over the head” of
mnbrak and brent, through global (external) variables. That is also how it passes
to £1dim a pointer to your user-supplied function.

Theonly thinginefficient about 1inmin isthis: ltsuseasan interface between a
multidimensional minimization strategy and a one-dimensional minimizationroutine
results in some unnecessary copying of vectors hither and yon. That should not

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

10.5 Direction Set (Powell’'s) Methods in Multidimensions 419

normally be a significant additionto the overall computational burden, but we cannot
disguise its inelegance.

#include "nrutil.h"
#define TOL 2.0e-4 Tolerance passed to brent.

int ncom; Global variables communicate with f1dim.
float *pcom,*xicom, (*nrfunc) (float []);

void linmin(float p[], float xi[], int n, float *fret, float (*func) (float []))
Given an n-dimensional point p[1..n] and an n-dimensional direction xi[1..n], moves and
resets p to where the function func(p) takes on a minimum along the direction xi from p,
and replaces xi by the actual vector displacement that p was moved. Also returns as fret
the value of func at the returned location p. This is actually all accomplished by calling the
routines mnbrak and brent.

{
float brent(float ax, float bx, float cx,
float (*f)(float), float tol, float *xmin);
float fidim(float x);
void mnbrak(float *ax, float *bx, float *cx, float *fa, float *fb,
float *fc, float (*func) (float));
int j;
float xx,xmin,fx,fb,fa,bx,ax;
ncom=n; Define the global variables.
pcom=vector(1l,n);
xicom=vector(1,n);
nrfunc=func;
for (j=1;j<=n;j++) {
pcom[jl=pl[jl;
xicom[jI=xil[j]l;
ax=0.0; Initial guess for brackets.
xx=1.0;
mnbrak (&ax,&xx,&bx,&fa,&fx,&fb,f1dim) ;
*fret=brent (ax,xx,bx,f1dim, TOL,&xmin) ;
for (j=1;j<=n;j++) { Construct the vector results to return.
xi[j] *= xmin;
pljl += xi[j];
free_vector(xicom,1,n);
free_vector(pcom,1,n);
}

#include "nrutil.h"

extern int ncom; Defined in 1linmin.
extern float *pcom,*xicom, (*nrfunc) (float []);

float fidim(float x)
Must accompany linmin.
{

int j;

float f,*xt;

xt=vector(1,ncom);

for (j=1;j<=ncom;j++) xt[jl=pcom[j]+x*xicom[j];
f=(*nrfunc) (xt);

free_vector(xt,1,ncom);

return f;

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

420 Chapter 10. Minimization or Maximization of Functions

CITED REFERENCES AND FURTHER READING:

Brent, R.P. 1973, Algorithms for Minimization without Derivatives (Englewood Cliffs, NJ: Prentice-
Hall), Chapter 7. [1]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), pp. 464-467. [2]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), pp. 259-262.

10.6 Conjugate Gradient Methods in
Multidimensions

We consider now the case where you are able to calculate, a a given N-
dimensiona point P, not just the value of a function f(P) but also the gradient
(vector of first partia derivatives) V f(P).

A rough counting argument will show how advantageousit isto use the gradient
information: Suppose that the function f is roughly approximated as a quadratic
form, as above in equation (10.5.1),

f(x)zc—b-x+%x~A-x (10.6.1)

Then the number of unknown parameters in f is equa to the number of free
parameters in A and b, which is 2N (N + 1), which we see to be of order N2
Changing any one of these parameters can move the location of the minimum.
Therefore, we should not expect to be able to find the minimum until we have
collected an equivalent information content, of order N2 numbers.

In thedirection set methods of §10.5, we collected the necessary information by
making on the order of N2 separate line minimizations, each requiring “afew” (but
sometimes a big few!) function evaluations. Now, each evaluation of the gradient
will bring us N new components of information. If we use them wisely, we should
need to make only of order NV separate line minimizations. That isin fact the case
for the agorithms in this section and the next.

A factor of NV improvement in computational speed is not necessarily implied.
As a rough estimate, we might imagine that the calculation of each component of
the gradient takes about as long as evaluating the function itself. Inthat case there
will be of order N equivalent function evaluations both with and without gradient
information. Even if the advantage is not of order IV, however, it is nevertheless
quite substantial: (i) Each calculated component of the gradient will typically save
not just one function evaluation, but a number of them, equivalent to, say, awhole
line minimization. (ii) Thereis often a high degree of redundancy in the formulas
for the various components of afunction’sgradient; when thisis so, especialy when
there is aso redundancy with the calculation of the function, then the calculation of
the gradient may cost significantly less than NV function evaluations.

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

