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for (i=m-1;i>=1;i--) {

f=s*e[i];
b=c*e[i];
e[i+1]=(r=pythag(f,g));

A plane rotation as in the origi-
nal QL, followed by Givens
rotations to restore tridiag-
onal form.

if (r == 0.0) { Recover from underflow.
d[i+1] -= p;

e[m]=0.0;

break;

}
s=f/r;
c=g/r;
g=d[i+1]-p;
r=(d[i]-g) *s+2.0%c*b;
d[i+1]=g+(p=s*r);
g=c*r-b;
/* Next loop can be omitted if eigenvectors not wanted*/
for (k=1;k<=n;k++) { Form eigenvectors.
f=z[k] [i+1];
z[k] [i+1]=s*z[k] [i]+c*f;
z[k] [i]=c*z[k] [i]-s*f;
}
}
if (r == 0.0 && i >= 1) continue;
d[1] -= p;
ell]=g;
e[m]=0.0;
}
} while (m !'= 1);
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11.4 Hermitian Matrices

The complex analog of a real, symmetric matrix is a Hermitian matrix,
satisfying equation (11.0.4). Jacobi transformations can be used to find eigenvalues
and eigenvectors, as a so can Househol der reduction to tridiagona form followed by
QL iteration. Complex versions of the previousroutines jacobi, tred2, and tqli
are quite analogousto their real counterparts. For working routines, consult [1,2].

An dternative, using the routines in this book, is to convert the Hermitian
problem to areal, symmetric one: If C = A + iB is a Hermitian matrix, then the
n x n complex eigenvalue problem

(A+iB) - (Uu+iv) = A(u+iv) (11.4.2)
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is equivalent to the 2n x 2n rea problem
A -B u u
[B . ] . H _AM (1142)

Note that the 2n x 2n matrix in (11.4.2) is symmetric: AT = A and BY = —B
if C is Hermitian.
Corresponding to a given eigenvaue )\, the vector

—v
[ U ] (11.4.3)
is dso an eigenvector, as you can verify by writing out the two matrix equa-
tions implied by (11.4.2). Thus if A1, A2,..., A, are the eigenvalues of C,
then the 2n eigenvalues of the augmented problem (11.4.2) are Ay, A1, Az, Ag, .« -,
An, An; €8Ch, inother words, isrepeated twice. The eigenvectorsarepairsof theform
u+4v andi(u + iv); that is, they are the same up to an inessentia phase. Thuswe
solve the augmented problem (11.4.2), and choose one eigenvalue and eigenvector
from each pair. These givetheeigenvauesand el genvectorsof theoriginal matrix C.

Working with the augmented matrix requiresafactor of 2 more storage than the
original complex matrix. In principle, acomplex agorithmisaso afactor of 2 more
efficient in computer time than is the solution of the augmented problem.
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11.5 Reduction of a General Matrix to
Hessenberg Form

The agorithms for symmetric matrices, given in the preceding sections, are
highly satisfactory in practice. By contrast, it is impossible to design equally
satisfactory algorithms for the nonsymmetric case. There are two reasons for this.
First, theeigenval ues of anonsymmetric matrix can bevery sensitivetosmall changes
in the matrix elements. Second, the matrix itself can be defective, so that thereis
no complete set of eigenvectors. We emphasize that these difficulties are intrinsic
properties of certain nonsymmetric matrices, and no numerical procedure can “cure”’
them. The best we can hopefor are procedures that don’t exacerbate such problems.

The presence of rounding error can only make the situation worse. With finite-
precision arithmetic, one cannot even design a foolproof agorithm to determine
whether a given matrix is defective or not. Thus current agorithms generaly try to
find acomplete set of eigenvectors, and rely on the user to inspect the results. If any
eigenvectors are almost parallel, the matrix is probably defective.
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