12.4 FFT in Two or More Dimensions 521

An aternative way of implementing this agorithm is to form an auxiliary
function by copying the even elements of f; into the first N/2 locations, and the
odd elements into the next N/2 elements in reverse order. However, it is not easy
to implement the aternative agorithm without a temporary storage array and we
prefer the above in-place agorithm.

Finally, we mention that there exist fast cosine transforms for small NV that do
not rely on an auxiliary function or use an FFT routine. Instead, they carry out the
transform directly, often coded in hardware for fixed N of small dimension [1].

CITED REFERENCES AND FURTHER READING:
Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall), §10-10.

Sorensen, H.V,, Jones, D.L., Heideman, M.T., and Burris, C.S. 1987, IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-35, pp. 849-863.

Hou, H.S. 1987, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35,
pp. 1455-1461 [see for additional references].

Hockney, R.W. 1971, in Methods in Computational Physics, vol. 9 (New York: Academic Press).
Temperton, C. 1980, Journal of Computational Physics, vol. 34, pp. 314-329.

Clarke, R.J. 1985, Transform Coding of Images, (Reading, MA: Addison-Wesley).

Gonzalez, R.C., and Wintz, P. 1987, Digital Image Processing, (Reading, MA: Addison-Wesley).

Chen, W., Smith, C.H., and Fralick, S.C. 1977, IEEE Transactions on Communications, vol. COM-
25, pp. 1004-1009. [1]

12.4 FFT in Two or More Dimensions

Given a complex function h(k1, k2) defined over the two-dimensiona grid
0<k <N;—1, 0<ky<Ny;—1,wecan define its two-dimensiona discrete
Fourier transform as a complex function H(n1, n2), defined over the same grid,

Na—1N;—1

H(?’Ll, TLQ) = Z Z exp(2m'k2n2/N2) exp(2m'k1n1/N1) h(kl, k2)
ko=0 k1=0
(12.4.1)

By pulling the“ subscripts 2" exponential outside of the sum over k1, or by reversing
the order of summation and pulling the “subscripts 1" outside of the sum over k-,
we can see instantly that the two-dimensional FFT can be computed by taking one-
dimensional FFTs sequentially on each index of the original function. Symbolically,

H(ny,n9) = FFT-on-index-1 (FFT-on-index-2 [h(k1, k2)])

12.4.2
= FFT-on-index-2 (FFT-on-index-1 [h(k1, k2)]) ()

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

522 Chapter 12. Fast Fourier Transform

For thisto be practical, of course, both N; and N» should be some efficient length
for an FFT, usualy a power of 2. Programming a two-dimensional FFT, using
(12.4.2) with a one-dimensional FFT routine, is a bit clumsier than it seems at first.
Because the one-dimensional routine requires that its input be in consecutive order
as a one-dimensional complex array, you find that you are endlessly copying things
out of the multidimensional input array and then copying things back into it. This
is not recommended technique. Rather, you should use a multidimensional FFT
routine, such as the one we give below.

The generdization of (12.4.1) to more than two dimensions, say to L-
dimensions, is evidently

Nr—1 Ni—1

H(ny,...,np) = Z e Z exp(2mikrng/NL) X -
k=0 k1=0 (1243)

X exp(27rik1n1/N1) h,(kl, caey kL)

where n; and k; rangefromOto Ny — 1, ... ,ny and kg rangefromOto Ny — 1.
How many calls to a one-dimensiona FFT arein (12.4.3)? Quite afew! For each
valueof kq, ks, ..., kr_1 you FFT to transform the L index. Then for each value of
ki,keo,...,kr—o and ny, you FFT to transform the L — 1 index. And so on. It is
best to rely on someone el se having done the bookkeeping for once and for al.

The inverse transforms of (12.4.1) or (12.4.3) are just what you would expect
them to be. Change the i's in the exponentials to —i's, and put an overal
factor of 1/(INy x --- x Np) in front of the whole thing. Most other features
of multidimensional FFTs are also analogous to features aready discussed in the
one-dimensional case:

e Freguencies are arranged in wrap-around order in the transform, but now

for each separate dimension.

e Theinput dataare aso treated as if they were wrapped around. If they are
discontinuous across this periodic identification (in any dimension) then
the spectrum will have some excess power at high frequencies because
of the discontinuity. The fix, if you care, is to remove multidimensiona
linear trends.

o If youaredoingspatia filtering and are worried about wrap-around effects,
then you need to zero-pad all around the border of the multidimensional
array. However, be sure to notice how costly zero-padding is in multidi-
mensional transforms. If you use too thick a zero-pad, you are going to
waste a lot of storage, especidly in 3 or more dimensions!

e Aliasing occurs as always if sufficient bandwidth limiting does not exist
along one or more of the dimensions of the transform.

Theroutine f ourn that we furnish herewith isa descendant of onewritten by N.
M. Brenner. It requires asinput (i) a scalar, telling the number of dimensions, e.g.,
2; (ii) avector, telling the length of the array in each dimension, e.g., (32,64). Note
that these lengths must all be powers of 2, and are the numbers of complex values
in each direction; (iii) the usual scalar equal to +1 indicating whether you want the
transform or its inverse; and, finaly (iv) the array of data

A few words about the data array: fourn accesses it as a one-dimensiona
array of real numbers, that is, datal1..(2N; Ny ... N.)1, of length equal to twice

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

12.4 FFT in Two or More Dimensions 523

,-data[1] row of 2N, float numbers
(\
Teet b row 1 P _> f,=0
<—>R iI : row 2 8 | f = 1
Nl il _> 17 Na,
W W
< . [2N, -1
B row N,/2 o f = 72Ny
- ! . _> ! NiA
<—> P rowN,/2+1 8 | f—+i
i ' Pl _> 1T T2n,
—T7 T 2N, -1
<—> B row N;/2 +2 P)
- ! . _> ! NiA
W W
< C Bl __ 1
; row N;] f,= N4,

A
data[2N;N,] ==~

Figure 12.4.1. Storage arrangement of frequenciesin the output H(f1, f2) of atwo-dimensional FFT.
The input data is a two-dimensional N1 x N2 array h(t1,t2) (stored by rows of complex numbers).
The output is also stored by complex rows. Each row correspondsto a particular value of f1, as shown
in the figure. Within each row, the arrangement of frequencies f- is exactly as shown in Figure 12.2.2.
Ay and A, are the sampling intervals in the 1 and 2 directions, respectively. The total number of (real)
array elementsis 2N; No. The program fourn can aso do more than two dimensions, and the storage
arrangement generalizes in the obvious way.

the product of the lengths of the L dimensions. It assumes that the array represents
an L-dimensional complex array, with individual components ordered as follows:
(i) each complex value occupies two sequentia locations, real part followed by
imaginary; (ii) thefirst subscript changes least rapidly as one goes through the array;
the last subscript changes most rapidly (that is, “store by rows,” the C norm); (iii)
subscripts range from 1 to their maximum values (Ny, Na, ..., Np, respectively),
rather than fromOto Ny — 1, No—1,..., Ny — 1. Almost all failuresto get fourn
to work result from improper understanding of the above ordering of the data array,
so take carel (Figure 12.4.1 illustrates the format of the output array.)

#include <math.h>
#define SWAP(a,b) tempr=(a); (a)=(b); (b)=tempr

void fourn(float data[], unsigned long nn[], int ndim, int isign)

Replaces data by its ndim-dimensional discrete Fourier transform, if isign is input as 1.
nn[1..ndim] is an integer array containing the lengths of each dimension (number of complex
values), which MUST all be powers of 2. data is a real array of length twice the product of
these lengths, in which the data are stored as in a multidimensional complex array: real and
imaginary parts of each element are in consecutive locations, and the rightmost index of the
array increases most rapidly as one proceeds along data. For a two-dimensional array, this is
equivalent to storing the array by rows. If isignis input as —1, data is replaced by its inverse
transform times the product of the lengths of all dimensions.

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

Chapter 12. Fast Fourier Transform

int idim;

unsigned long i1,i2,i3,i2rev,i3rev,ipl,ip2,ip3,ifpl,ifp2;
unsigned long ibit,k1,k2,n,nprev,nrem,ntot;

float tempi,tempr;

double theta,wi,wpi,wpr,wr,wtemp; Double precision for trigonometric recur-

rences.
for (ntot=1,idim=1;idim<=ndim;idim++) Compute total number of complex val-
ntot *= nn[idim]; ues.

nprev=1;

for (idim=ndim;idim>=1;idim--) {
n=nn[idim];
nrem=ntot/(n*nprev) ;
ipl=nprev << 1;

Main loop over the dimensions.

ip2=ipl*n;

ip3=ip2%*nrem;

i2rev=1;

for (i2=1;i2<=ip2;i2+=ip1) { This is the bit-reversal section of the
if (i2 < i2rev) { routine.

for (i1=i2;i1<=i2+ip1-2;i1+=2) {
for (i3=i1;i3<=ip3;i3+=ip2) {
i3rev=i2rev+i3-i2;
SWAP(data[i3] ,datal[i3rev]);
SWAP(data[i3+1] ,datal[i3rev+1]);

}
}
ibit=ip2 >> 1;
while (ibit >= ipl && i2rev > ibit) {

i2rev -= ibit;
ibit >>= 1;
}
i2rev += ibit;
}
ifpl=ipi; Here begins the Danielson-Lanczos sec-

while (ifpl < ip2) { tion of the routine
ifp2=ifpl << 1;
theta=isign*6.28318530717959/ (ifp2/ipl); Initialize for the trig. recur-
wtemp=sin(0.5*theta) ; rence.
wpr = -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0;
wi=0.0;
for (i3=1;i3<=ifp1l;i3+=ipl) {
for (i1=i3;i1<=i3+ip1-2;i1+=2) {
for (i2=i1;i2<=ip3;i2+=ifp2) {
k1=i2; Danielson-Lanczos formula:
k2=k1+ifpl;
tempr=(float)wrxdatal[k2]-(float)wixdatal[k2+1];
tempi=(float)wrxdatal[k2+1]+(float)wix*datalk2];
datal[k2]=datal[kl]-tempr;
datal[k2+1]=datal[kil+1]-tempi;
datalk1l] += tempr;
datal[k1+1] += tempi;
}
}
wr=(wtemp=wr) *wpr-wi*wpi+wr; Trigonometric recurrence
wi=wi*wpr+wtemp*wpi+wi;
}
ifpl=ifp2;
}

nprev *= n;

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

12.5 Fourier Transforms of Real Data in Two and Three Dimensions 525

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

12.5 Fourier Transforms of Real Data in Two
and Three Dimensions

Two-dimensional FFTs are particularly important in the field of image process-
ing. Animageisusually represented as atwo-dimensiona array of pixel intensities,
real (and usualy positive) numbers. One commonly desires to filter high, or low,
frequency spatiadl components from an image; or to convolve or deconvolve the
image with some instrumental point spread function. Use of the FFT is by far the
most efficient technique.

In three dimensions, a common use of the FFT is to solve Poisson’s equation
for a potential (e.g., electromagnetic or gravitational) on a three-dimensional lattice
that represents the discretization of three-dimensional space. Here the source terms
(mass or charge distribution) and the desired potentials are also real. In two and
three dimensions, with large arrays, memory is often at a premium. It is therefore
important to perform the FFTs, insofar as possible, on the data “in place” We
want aroutinewith functionality similar to the multidimensional FFT routinefourn
(§12.4), but which operates on real, not complex, input data. We give such a
routine in this section. The development is analogous to that of §12.3 leading to
the one-dimensional routine realft. (You might wish to review that material at
this point, particularly equation 12.3.5.)

It is convenient to think of the independent variables ny, ..., ny in equation
(12.4.3) as representing an L-dimensional vector 7 in wave-number space, with
values on the lattice of integers. The transform H(ni,...,ny) is then denoted
H(7).

It iseasy to see that the transform H (77) is periodicin each of its L dimensions.
Specifically, if P\, P,, P, ... denote the vectors (N1,0,0,...), (0,N,0,...),
(0,0, N3, ...), and so forth, then

HA@+P)=H@) j=1,...,L (12.5.1)

Equation (12.5.1) holds for any input data, real or complex. When the datais red,
we have the additional symmetry

H(—7) = H(7)* (125.2)

Equations(12.5.1) and (12.5.2) imply that thefull transform can betrivially obtained
from the subset of lattice values 7 that have
O S ni S N1 -1
0 S no S N2 -1
(125.3)

N
OS”LSTL

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

