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15.4 General Linear Least Squares

An immediate generalization of §15.2 isto fit a set of data points (z;, y;) toa
model that is not just alinear combination of 1 and = (namely a + bx), but rather a
linear combination of any M specified functions of x. For example, the functions
couldbel,z,22,...,2M~1 inwhich case their genera linear combination,

y(x) = ay + agr +azx? + -+ apyrM1 (15.4.2)

is a polynomial of degree M — 1. Or, the functions could be sines and cosines, in
which case their general linear combination is a harmonic series.
The general form of this kind of modd is

M
y(r) = apXe(x) (15.4.2)
k=1

where X;(z),..., Xy (z) are arbitrary fixed functions of xz, caled the basis
functions.

Note that the functions X}, () can be wildly nonlinear functions of x. In this
discussion “linear” refers only to the model’s dependence on its parameters ay.

For these linear models we generdlize the discussion of the previous section
by defining a merit function

s n 5= S0 aXee) |

=) l : k=1 : ] (15.4.3)
i=1 Ti

As before, o; is the measurement error (standard deviation) of the ith data point,

presumed to be known. If the measurement errors are not known, they may al (as

discussed at the end of §15.1) be set to the constant value o = 1.

Once again, we will pick as best parameters those that minimize y2. There are
several different techniquesavailable for finding thisminimum. Two are particularly
useful, and we will discuss both in this section. To introduce them and elucidate
their relationship, we need some notation.

Let A be a matrix whose N x M components are constructed from the M
basis functions evaluated at the IV abscissas x;, and from the N measurement errors
o4, by the prescription

X (i)
g;
Thematrix A iscalled the design matrix of thefitting problem. Noticethat in genera
A has more rows than columns, N > M, since there must be more data points than
model parametersto be solved for. (You can fit a straight lineto two points, but not a
very meaningful quintic!) The design matrix isshown schematically in Figure 15.4.1.

Also define a vector b of length N by
b =L (15.4.5)
g;
and denote the M vector whose components are the parameters to be fitted,
ai,...,ap, by a.

Ay = (15.4.4)
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672 Chapter 15.  Modeling of Data

«—— basisfunctions ——

Xi( ) X() -+ Xu()
X1 Xi(x)  Xo(x) . Xu(x)
01 o1 01
| X2 Xi(x2)  Xo(x2) . Xm(X2)
02 02 O
o
5
XN Xixn)  Xolw) L Xu(w)
ON ON ON

Figure 15.4.1. Design matrix for the least-squaresfit of alinear combination of M basisfunctionsto N
data points. The matrix elements involve the basis functions evaluated at the values of the independent
variableat which measurementsare made, and the standard deviations of themeasured dependent variable.
The measured values of the dependent variable do not enter the design matrix.

Solution by Use of the Normal Equations

The minimum of (15.4.3) occurs where the derivative of x2 with respect to all
M parameters a; vanishes. Specializing equation (15.1.7) to the case of the model
(15.4.2), this condition yields the M equations

N M
1
j=1

=1

Interchanging the order of summations, we can write (15.4.6) as the matrix equation

M
> anja; = B (15.4.7)
=1
where
N X () X ()
REDD %2'“1 orequivaently  [a] =AT A (15.4.8)

=1 g

an M x M matrix, and

N ouX (2;)
Be=> Ytk B orequivaently  [8] =AT-b (15.4.9)
i=1 i
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15.4 General Linear Least Squares 673

a vector of length M.

The equations (15.4.6) or (15.4.7) are called the normal equations of the |east-
squares problem. They can be solved for the vector of parameters a by the standard
methods of Chapter 2, notably LU decomposition and backsubstitution, Choleksy
decomposition, or Gauss-Jordan elimination. In matrix form, the normal equations
can be written as either

[a]-a=[3] oras (AT-A)-a=AT.b (15.4.10)

The inverse matrix Cj;, = [a]j_kl is closely related to the probable (or, more
precisely, standard) uncertainties of the estimated parameters a. To estimate these
uncertainties, consider that

M M N y X (IIJ )
— i\ Lg
a; = [al18 =3 Ci | - ] (15.4.11)
k=1 k=1 1=1 ?

and that the variance associated with the estimate ¢ ; can befound asin (15.2.7) from

o2(a;) = i o2 (gzﬂ ) ’ (15.4.12)

Note that «; is independent of y;, so that

M
g‘“ =3 CjXu(as)/o? (15.4.13)
i o

Consequently, we find that

M M
o*(a;) =YY CixCii

k=11=1

N

3 X, (xz';zXl (xi)] (15.4.14)

The final term in brackets is just the matrix [«]. Since this is the matrix inverse
of [C], (15.4.14) reduces immediately to

o%(a;) = Cj; (15.4.15)

In other words, the diagonal elements of [C] are the variances (squared
uncertainties) of the fitted parameters a. It should not surprise you to learn that the
off-diagonal elements C;;, are the covariances between a; and ay, (cf. 15.2.10); but
we shall defer discussion of these to §15.6.

We will now give aroutinethat implements the above formulas for the general
linear least-squares problem, by the method of normal equations. Since we wish to
compute not only the solution vector a but aso the covariance matrix [C], it is most
convenient to use Gauss-Jordan elimination (routine gaussj of §2.1) to perform the
linear algebra. The operation count, in this application, isno larger than that for LU
decomposition. If you have no need for the covariance matrix, however, you can
save a factor of 3 on the linear algebra by switching to LU decomposition, without
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674 Chapter 15.  Modeling of Data

computation of the matrix inverse. In theory, since AT - A is positive definite,
Cholesky decomposition is the most efficient way to solve the normal equations.
However, in practice most of the computing time is spent in looping over the data
to form the equations, and Gauss-Jordan is quite adequate.

We need to warn you that the solution of aleast-sguares problem directly from
the normal equations is rather susceptible to roundoff error. An aternative, and
preferred, technique involves @ R decomposition (§2.10, §11.3, and §11.6) of the
design matrix A. Thisisessentially what we did at the end of §15.2 for fitting datato
astraight line, but without invoking all the machinery of Q) R to derive the necessary
formulas. Later in this section, we will discuss other difficultiesin the least-squares
problem, for which thecureissingular value decomposition (SV D), of whichwegive
an implementation. It turnsout that SV D also fixes the roundoff problem, soitisour
recommended techniquefor all but “easy” |east-squares problems. It isfor these easy
problems that the following routine, which solves the normal equations, isintended.

The routine below introduces one bookkeeping trick that is quite useful in
practica work. Frequently it is a matter of “art” to decide which parameters ay,
in a model should be fit from the data set, and which should be held constant at
fixed values, for example values predicted by a theory or measured in a previous
experiment. One wants, therefore, to have a convenient means for “freezing”
and “unfreezing” the parameters a. In the following routine the total number of
parameters ay, is denoted ma (called M above). Asinput to the routine, you supply
an array ia[1..ma], whose components are either zero or nonzero (eg., 1). Zeros
indicate that you want the corresponding el ements of the parameter vector a[1. .ma]
to be held fixed at their input values. Nonzeros indicate parameters that should be
fitted for. On output, any frozen parameters will have their variances, and al their
covariances, set to zero in the covariance matrix.

#include "nrutil.h"

void 1fit(float x[], float y[], float sig[], int ndat, float a[], int ial],

int ma, float **covar, float *chisq, void (*funcs)(float, float [], int))
Given a set of data points x[1..ndat], y[1..ndat] with individual standard deviations
sigl[1..ndat], use x? minimization to fit for some or all of the coefficients a[1..ma] of
a function that depends linearly on a, y = >, a; x afunc;(z). The input array ia[1..mal
indicates by nonzero entries those components of a that should be fitted for, and by zero entries
those components that should be held fixed at their input values. The program returns values
fora[1..mal, x2 = chisq, and the covariance matrix covar [1..ma] [1..mal. (Parameters
held fixed will return zero covariances.) The user supplies a routine funcs (x,afunc,ma) that
returns the ma basis functions evaluated at * = x in the array afunc[1. .ma].
{

void covsrt(float **covar, int ma, int ia[], int mfit);

void gaussj(float **a, int n, float **b, int m);

int i,j,k,1,m,mfit=0;

float ym,wt,sum,sig2i,**beta,*afunc;

beta=matrix(1,ma,1,1);

afunc=vector (1,ma);

for (j=1;j<=ma;j++)
if (ialjl) mfit++;

if (mfit == 0) nrerror("1lfit: no parameters to be fitted");

for (j=1;j<=mfit;j++) { Initialize the (symmetric) matrix.
for (k=1;k<=mfit;k++) covar[j][k]=0.0;
betal[j][1]=0.0;

}

for (i=1;i<=ndat;i++) { Loop over data to accumulate coefficients of
the normal equations.
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15.4 General Linear Least Squares 675

(*funcs) (x[i],afunc,ma) ;
ym=y [i];
if (mfit < ma) { Subtract off dependences on known pieces
for (j=1;j<=ma;j++) of the fitting function.
if ('ia[j]) ym -= al[jl*afunc[j];
}
sig2i=1.0/SQR(sigli]);
for (j=0,1=1;1<=ma;1++) {
if (ia[1l) {
wt=afunc[1]*sig2i;
for (j++,k=0,m=1;m<=1;m++)
if (ialm]) covar[j] [++k] += wt*afunc[m];
betal[j] [1] += ym*wt;

}
}
for (j=2;j<=mfit;j++)
for (k=1;k<j;k++)
covar [k] [jl=covar[j] [k];

Fill in above the diagonal from symmetry.

gaussj(covar,mfit,beta,1); Matrix solution.
for (j=0,1=1;1<=ma;1l++)

if (ial[l]) alll=betal++j][1]; Partition solution to appropriate coefficients
*chisq=0.0; a

for (i=1;i<=ndat;i++) { Evaluate X2 of the fit.
(*funcs) (x[i],afunc,ma) ;
for (sum=0.0,j=1;j<=ma;j++) sum += a[jl*afunc[j];

*xchisq += SQR((y[i]-sum)/sig[il);

}
covsrt(covar,ma,ia,mfit); Sort covariance matrix to true order of fitting
free_vector(afunc,1,ma); coefficients.

free_matrix(beta,1,ma,1,1);

That last call to a function covsrt is only for the purpose of spreading the
covariances back into the full ma x ma covariance matrix, in the proper rows and
columns and with zero variances and covariances set for variables which were
held frozen.

The function covsrt is as follows.

#define SWAP(a,b) {swap=(a); (a)=(b); (b)=swap;}

void covsrt(float **covar, int ma, int ia[], int mfit)
Expand in storage the covariance matrix covar, so as to take into account parameters that are
being held fixed. (For the latter, return zero covariances.)
{
int i,j,k;
float swap;

for (i=mfit+1;i<=ma;i++)
for (j=1;j<=i;j++) covar[i] [jl=covar[j][i]=0.0;
k=mfit;
for (j=ma;j>=1;j--) {
if (ialjl) {
for (i=1;i<=ma;i++) SWAP(covar[i] [k],covar[i][j])
for (i=1;i<=ma;i++) SWAP(covar[k][i],covar[j][i])
k-—;
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676 Chapter 15.  Modeling of Data

Solution by Use of Singular Value Decomposition

In some applications, the normal equations are perfectly adequate for linear
least-squares problems. However, in many cases the normal equationsare very close
to singular. A zero pivot element may be encountered during the solution of the
linear equations (e.g., in gaussj), in which case you get no solution at al. Or a
very small pivot may occur, in which case you typicaly get fitted parameters ay
with very large magnitudesthat are delicately (and unstably) balanced to cancel out
amost precisely when the fitted function is evaluated.

Why does this commonly occur? The reason is that, more often than experi-
menters would like to admit, data do not clearly distinguish between two or more of
the basis functions provided. If two such functions, or two different combinations
of functions, happen to fit the data about equally well — or equally badly — then
the matrix [«], unable to distinguish between them, neatly folds up its tent and
becomes singular. Thereisacertain mathematical irony in the fact that least-squares
problems are both overdetermined (number of data points greater than number of
parameters) and underdetermined (ambiguous combinations of parameters exist);
but that is how it frequently is. The ambiguities can be extremely hard to notice
a priori in complicated problems.

Enter singular value decomposition (SVD). This would be a good time for you
to review the material in §2.6, which we will not repeat here. In the case of an
overdetermined system, SV D produces a solution that is the best approximation in
the least-squares sense, cf. equation (2.6.10). That is exactly what we want. In
the case of an underdetermined system, SVD produces a solution whose values (for
us, the a;’s) are smalest in the least-squares sense, cf. equation (2.6.8). That is
also what we want: When some combination of basis functionsis irrelevant to the
fit, that combination will be driven down to a small, innocuous, value, rather than
pushed up to delicately canceling infinities.

In terms of the design matrix A (eguation 15.4.4) and the vector b (equation
15.4.5), minimization of x?2 in (15.4.3) can be written as

find a thatminimizes y?>=|A-a—b|’ (15.4.16)

Comparing to equation (2.6.9), we see that thisis precisely the problem that routines
svdcmp and svbksb are designed to solve. The solution, which isgiven by equation
(2.6.12), can be rewritten as follows: If U and V enter the SVD decomposition
of A according to equation (2.6.1), as computed by svdcmp, then let the vectors
Uy @ = 1,..., M denote the columns of U (each one a vector of length IV); and
let the vectors V;);i = 1,..., M denote the columns of V (each one a vector
of length M). Then the solution (2.6.12) of the least-squares problem (15.4.16)
can be written as

M (U b
a=>_ Vi (15.4.17)

W
i=1 v

where the w; are, asin §2.6, the singular values calculated by svdcmp.
Equation (15.4.17) says that the fitted parameters a are linear combinations of
the columns of V, with coefficients obtained by forming dot products of the columns
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15.4 General Linear Least Squares 677

of U with the weighted data vector (15.4.5). Though it is beyond our scope to prove
here, it turnsout that the standard (loosdly, “ probable”’) errorsin thefitted parameters
are aso linear combinations of the columns of V. In fact, equation (15.4.17) can
be written in a form displaying these errors as

M
Ug - b
V,:
> (5 ve

=1

a=

1 1
+ Vet —V 15.4.18
oV onr VD ( )

Here each + is followed by a standard deviation. The amazing fact is that,
decomposed in this fashion, the standard deviations are all mutually independent
(uncorrelated). Therefore they can be added together in root-mean-square fashion.
What is going on is that the vectors V ;) are the principal axes of the error ellipsoid
of the fitted parameters a (see §15.6).

It follows that the variance in the estimate of a parameter a; is given by

M M 2
o*(a;) =) %[Vm]? =Y (V—J> (15.4.19)

W
i=1 i=1 v

whose result should be identical with (15.4.14). As before, you should not be
surprised at the formulafor the covariances, here given without proof,

M
Cov(ag,ap) = 3 (%L@) (15.4.20)

i=1 Wi

We introduced this subsection by noting that the norma equations can fail
by encountering a zero pivot. We have not yet, however, mentioned how SVD
overcomes this problem. The answer is. If any singular value w; is zero, its
reciprocal in equation (15.4.18) should be set to zero, not infinity. (Compare the
discussion preceding equation 2.6.7.) This corregponds to adding to the fitted
parameters a a zero multiple, rather than some random large multiple, of any linear
combination of basis functionsthat are degenerate in thefit. Itisagood thing to do!

Moreover, if a singular value w; is nonzero but very small, you should also
define its reciprocal to be zero, since its apparent value is probably an artifact of
roundoff error, not a meaningful number. A plausible answer to the question “how
small is small?’ is to edit in this fashion al singular values whose ratio to the
largest singular value is less than NV times the machine precision e. (You might
argue for v/, or a constant, instead of N as the multiple; that starts getting into
hardware-dependent questions.)

There is another reason for editing even additional singular values, ones large
enough that roundoff error is not a question. Singular value decomposition allows
you to identify linear combinations of variables that just happen not to contribute
much to reducing the x? of your data set. Editing these can sometimes reduce the
probable error on your coefficients quite significantly, whileincreasing the minimum
x2 only negligibly. We will learn more about identifying and treating such cases
in §15.6. In the following routine, the point at which this kind of editing would
occur is indicated.

Generally speaking, werecommend that you aways use SV D techniquesinstead
of using the normal equations. SVD’sonly significant disadvantageisthat it requires
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678 Chapter 15.  Modeling of Data

an extra array of size N x M to store the whole design matrix. This storage
is overwritten by the matrix U. Storage is also required for the M x M matrix
V, but this is instead of the same-sized matrix for the coefficients of the normal
equations. SVD can be significantly dower than solving the norma equations;
however, its great advantage, that it (theoretically) cannot fail, more than makes
up for the speed disadvantage.

In the routine that follows, the matrices u,v and the vector w are input as
working space. Thelogica dimensions of the problem arendata data pointsby ma
basis functions (and fitted parameters). If you care only about the values a of the
fitted parameters, then u, v, w contain no useful information on output. If you want
probable errors for the fitted parameters, read on.

#include "nrutil.h"
#define TOL 1.0e-5

void svdfit(float x[], float y[], float sig[], int ndata, float a[], int ma,
float **u, float **v, float w[], float *chisq,
void (*funcs) (float, float [], int))
Given a set of data points x[1..ndatal,y[1..ndata] with individual standard deviations
sigl[1..ndatal, use x2 minimization to determine the coefficients a[1..ma] of the fit-
ting function y = >, a; x afunc;(z). Here we solve the fitting equations using singular
value decomposition of the ndata by ma matrix, as in §2.6. Arrays u[1..ndata] [1. .ma],
v[1..ma]l[1..mal, and w[1..mal] provide workspace on input; on output they define the
singular value decomposition, and can be used to obtain the covariance matrix. The pro-
gram returns values for the ma fit parameters a, and x2, chisq. The user supplies a routine
funcs (x,afunc,ma) that returns the ma basis functions evaluated at 2 = X in the array
afunc[1..ma]l.

{
void svbksb(float **u, float w[], float **v, int m, int n, float b[],
float x[1);
void svdcmp(float **a, int m, int n, float w[], float **v);
int j,i;

float wmax,tmp,thresh,sum,*b,*afunc;

b=vector (1,ndata);
afunc=vector(1,ma);
for (i=1;i<=ndata;i++) { Accumulate coefficients of the fitting ma-
(*funcs) (x[i],afunc,ma) ; trix.
tmp=1.0/sig[i];
for (j=1;j<=ma;j++) uli] [jl=afunc[j]*tmp;
bl[i]=y[i]*tmp;

}

svdcmp (u,ndata,ma,w,v) ; Singular value decomposition.

wmax=0.0; Edit the singular values, given TOL from the
for (j=1;j<=ma;j++) #define statement, between here ...

if (wl[j] > wmax) wmax=w[j];
thresh=TOL*wmax ;
for (j=1;j<=ma;j++)

if (w[j] < thresh) w[j]=0.0; ...and here.
svbksb(u,w,v,ndata,ma,b,a);
*chisq=0.0; Evaluate chi-square.

for (i=1;i<=ndata;i++) {
(*funcs) (x[i],afunc,ma) ;
for (sum=0.0,j=1;j<=ma;j++) sum += a[jl*afunc([j];
*chisq += (tmp=(y[i]-sum)/sigl[i],tmp*tmp);

}

free_vector(afunc,1,ma);

free_vector(b,1,ndata);
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15.4 General Linear Least Squares 679

Feeding the matrix v and vector w output by the above program into the
following short routine, you easily obtain variances and covariances of the fitted
parameters a. The square roots of the variances are the standard deviations of
the fitted parameters. The routine straightforwardly implements equation (15.4.20)
above, with the convention that singular values equal to zero are recognized as
having been edited out of the fit.

#include "nrutil.h"

void svdvar(float **v, int ma, float w[], float **cvm)

To evaluate the covariance matrix cvm[1. .ma] [1. .ma] of the fit for ma parameters obtained
by svdfit, call this routine with matrices v[1..ma] [1..mal], w[1..ma] as returned from
svdfit.

{
int k,j,1i;
float sum,*wti;

wti=vector(l,ma);
for (i=1;i<=ma;i++) {
wti[i]=0.0;
if (wlil) wtilil=1.0/(wlil*w[i]);
}
for (i=1;i<=maj;i++) { Sum contributions to covariance matrix (15.4.20).
for (j=1;j<=i;j++) {
for (sum=0.0,k=1;k<=ma;k++) sum += v[i] [k]*v[j] [k]*wti[k];
cvm[j] [i]=cvm[i] [j]=sum;

}

free_vector(wti,1,ma);

Examples

Be aware that some apparently nonlinear problems can be expressed so that
they are linear. For example, an exponential model with two parameters a and b,

y(x) = aexp(—bx) (15.4.21)
can be rewritten as
logly(z)] = ¢ — bz (15.4.22)

which islinear in its parameters ¢ and b. (Of course you must be aware that such
transformations do not exactly take Gaussian errors into Gaussian errors.)
Also watch out for “non-parameters,” as in

y(x) = aexp(—bx + d) (15.4.23)

Herethe parameters a and d are, infact, indistinguishable. Thisisagood example of
where the normal equationswill be exactly singular, and where SVD will find azero
singular value. SVD will then make a “least-squares’ choice for setting a balance
between a and d (or, rather, their equivalentsin thelinear model derived by taking the
logarithms). However — and thisis true whenever SVD gives back a zero singular
value — you are better advised to figure out analytically where the degeneracy is
among your basis functions, and then make appropriate deletionsin the basis set.

Here are two examples for user-supplied routinesfuncs. Thefirst oneistrivial
and fits a general polynomid to a set of data
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680 Chapter 15. Modeling of Data

void fpoly(float x, float p[], int np)
Fitting routine for a polynomial of degree np-1, with coefficients in the array p[1. .np].
{

int j;

plil=1.0;
for (j=2;j<=np;j++) pljl=plj-11*x;

Thesecond exampleisdlightlylesstrivial. Itisusedtofit Legendre polynomials
up to some order n1-1 through a data set.

void fleg(float x, float pl[], int nl)
Fitting routine for an expansion with nl Legendre polynomials p1, evaluated using the recurrence
relation as in §5.5.
{
int j;
float twox,f2,f1,d;

pll1]=1.0;
pll2]=x;
if (ol > 2) {
twox=2.0%x;
f2=x;
d=1.0;
for (j=3;j<=nl;j++) {
fil=d++;
f2 += twox;
plljl=(£2*pl[j-11-£f1*pl[j-21)/d;

Multidimensional Fits

If you are measuring a single variable y as a function of more than one variable
— say, avector of variablesx, then your basisfunctionswill be functionsof avector,

X1(X), ..., Xp(X). The x? merit function is now
N M 2
2 Yi — Zk:l ar Xy (Xz)
= 15.4.24
X ;:1 p ( )

All of the preceding discussion goes through unchanged, with = replaced by x. In
fact, if you are willing to tolerate a bit of programming hack, you can use the above
programs without any modification: In both 1fit and svdfit, the only use made
of thearray elementsx [i] isthat each element isin turn passed to the user-supplied
routine funcs, which duly gives back the values of the basis functions at that point.
If youset x[i]=1 beforecalling1fit or svdfit, and independently provide funcs
with the true vector values of your data points(e.g., in global variables), then funcs
can trandatefrom thefictitiousx [1]’sto the actual data pointsbefore doing itswork.

CITED REFERENCES AND FURTHER READING:

Bevington, P.R. 1969, Data Reduction and Error Analysis for the Physical Sciences (New York:
McGraw-Hill), Chapters 8-9.
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Lawson, C.L., and Hanson, R. 1974, Solving Least Squares Problems (Englewood Cliffs, NJ:
Prentice-Hall).

Forsythe, G.E., Malcolm, M.A., and Moler, C.B. 1977, Computer Methods for Mathematical
Computations (Englewood Cliffs, NJ: Prentice-Hall), Chapter 9.

15.5 Nonlinear Models

We now consider fitting when the model depends nonlinearly on the set of M
unknown parameters ax, k = 1,2, ..., M. We use the same approach as in previous
sections, namely to define a x? merit function and determine best-fit parameters
by its minimization. With nonlinear dependences, however, the minimization must
proceed iteratively. Given tria values for the parameters, we develop a procedure
that improves the trial solution. The procedure is then repeated until 2 stops (or
effectively stops) decreasing.

How isthisproblem different from the general nonlinear function minimization
problem aready deat with in Chapter 10? Superficidly, not at al: Sufficiently
close to the minimum, we expect the x? function to be well approximated by a
quadratic form, which we can write as

Xz(a)zy—d-a+%a~D-a (155.1)

where d is an M-vector and D isan M x M matrix. (Compare equation 10.6.1.)
If the approximation is a good one, we know how to jump from the current trial
parameters a.,,; to the minimizing ones an,;, in asingle leap, namely

Qmin = Acur + D71+ [~V X% (Acur)] (15.5.2)

(Compare equation 10.7.4.)

On the other hand, (15.5.1) might be a poor local approximation to the shape
of the function that we are trying to minimize at a.,,. In that case, about al we
can do is take a step down the gradient, as in the steepest descent method (510.6).
In other words,

Bpext = Bcur — CONStaNt x Vx? (8eur) (15.5.3)

where the constant is small enough not to exhaust the downhill direction.

To use (15.5.2) or (15.5.3), we must be able to compute the gradient of the x?
functionat any set of parametersa. To use (15.5.2) we a so need the matrix D, which
isthe second derivative matrix (Hessian matrix) of the x? merit function, at any a.

Now, thisisthe crucial difference from Chapter 10: There, we had no way of
directly evaluating the Hessian matrix. We were given only the ability to evaluate
the function to be minimized and (in some cases) its gradient. Therefore, we had
to resort to iterative methods not just because our function was nonlinear, but also
in order to build up information about the Hessian matrix. Sections 10.7 and 10.6
concerned themselves with two different techniquesfor buildingup thisinformation.
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