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dy[jl=yest[jl;

else {
for (k=1;k<iest;k++)
fx[k+1]=x[iest-k]/xest;
for (j=1;j<=nv;j++) {
v=d[j][1];
d[j] [1]=yy=c=yest[j];
for (k=2;k<=iest;k++) {

Evaluate next diagonal in tableau.

bil=fx[k]*v;
b=bl-c;
if (b) {
b=(c-v)/b;
ddy=c*b;
c=blxb;
} else Care needed to avoid division by 0.
ddy=v;

if (k != iest) v=d[jl[k];
d[j] [k]=day;
yy += ddy;

}

dy[j]=ddy;

yz[jl=yy;

}
}

free_vector(fx,1,iest);
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16.5 Second-Order Conservative Equations

Usually when you have a system of high-order differential equationsto solve it is best
to reformulate them as a system of first-order equations, as discussed in §16.0. There is
a particular class of equations that occurs quite frequently in practice where you can gain
about a factor of two in efficiency by differencing the equations directly. The equations are
second-order systems where the derivative does not appear on the right-hand side:

v'=f(zy),  yl@o)=wo,  y(w0)=20 (16.5.1)

As usual, y can denote a vector of values.
Stoermer’s rule, dating back to 1907, has been a popular method for discretizing such
systems. With h = H/m we have

y1 = yo + hlz0 + 3hf(xo,y0)]
Yool — 20k + Yr1 :h2f($o+l€h,yk), k=1,....m—1 (16.5.2)
Zm = (Ym — Ym—1)/h + 3hf(zo + H,ym)
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Here z,, isy’(xo + H). Henrici showed how to rewrite equations (16.5.2) to reduce roundoff
error by using the quantities A = yr4+1 — yr. Start with

Ao = hlzo + shf(zo,y0)]

(16.5.3)
y1 = yo + Ao
Thenfor k = 1,...,m — 1, set
A = A1+ h2f(900 + kh,yx)
(16.5.4)
Ykt1 = Yk + Ak
Finally compute the derivative from
Zm = Am_1/h+ $hf(zo+ H,ym) (16.5.5)

Gragg again showed that the error series for equations (16.5.3)—16.5.5) contains only
even powersof i, and so the method isalogical candidatefor extrapolationalaBulirsch-Stoer.
We replace mmid by the following routine stoerm:

#include "nrutil.h"

void stoerm(float y[], float d2y[], int nv, float xs, float htot, int nstep,

float yout[], void (*derivs)(float, float [], float []))
Stoermer’s rule for integrating v/’ = f(z,y) for a system of n = nv/2 equations. On input
y[1..nv] contains y in its first n elements and ¢’ in its second n elements, all evaluated at
xs. d2y[1..nv] contains the right-hand side function f (also evaluated at xs) in its first n
elements. Its second n elements are not referenced. Also input is htot, the total step to be
taken, and nstep, the number of substeps to be used. The output is returned as yout [1..nv],
with the same storage arrangement as y. derivs is the user-supplied routine that calculates f.
{

int i,n,neqns,nn;

float h,h2,halfh,x,*ytemp;

ytemp=vector(1,nv);

h=htot/nstep; Stepsize this trip.

halfh=0.5%h;

neqns=nv/2; Number of equations.

for (i=1;i<=neqns;i++) { First step.
n=neqns+i;

ytemp [i]=y[il+(ytemp [n]=h*(y [n]+halfh*d2y[il));

x=xs+h;

(*derivs) (x,ytemp,yout) ; Use yout for temporary storage of derivatives.
h2=hx*h;

for (nn=2;nn<=nstep;nn++) { General step.

for (i=1;i<=neqns;i++)

ytemp[i] += (ytemp[(n=neqns+i)] += h2*yout[i]);
X += h;
(*derivs) (x,ytemp,yout) ;

}

for (i=1;i<=neqns;i++) { Last step.
n=neqns+i;
yout [n]=ytemp[n] /h+halfh*yout[i];
yout [i]=ytemp[i];

}

free_vector(ytemp,1,nv);
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Note that for compatibility with bsstep the arrays y and d2y are of length 2n for a
system of n second-order equations. The values of y are stored in the first n elements of y,
while thefirst derivatives are stored in the second n elements. Theright-hand side f is stored
in the first n elements of the array d2y; the second n elements are unused. With this storage
arrangement you can use bsstep simply by replacing the call to mmid with one to stoerm
using the same arguments; just be sure that the argument nv of bsstep is set to 2n. You
should also use the more efficient sequence of stepsizes suggested by Deuflhard:

n=1234,5,... (16.5.6)

and set KMAXX = 12 in bsstep.

CITED REFERENCES AND FURTHER READING:
Deuflhard, P. 1985, SIAM Review, vol. 27, pp. 505-535.

16.6 Stiff Sets of Equations

As soon as one dedals with more than one first-order differential equation, the
possibility of a <tiff set of equations arises. Stiffness occurs in a problem where
there are two or more very different scales of the independent variable on which
the dependent variables are changing. For example, consider the following set
of eguations[1]:

u' = 998u + 1998v

, (16.6.1)
v = —999u — 1999v
with boundary conditions
u(0) =1 v(0) =0 (16.6.2)
By means of the transformation
u=2y—z v=—y+z (16.6.3)
we find the solution
U = 2e~F _ 1000z
b= e 4 =100z (16.6.4)

If we integrated the system (16.6.1) with any of the methods given so far in this
chapter, the presence of the e 1000 term would require a stepsize h < 1/1000 for
the method to be stable (the reason for this is explained below). Thisis so even
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