762 Chapter 17.  Two Point Boundary Value Problems

for (i=1;i<=n;i++) flil=f1[i]-f2[i];
free_vector(y,1,nvar);
free_vector(f2,1,nvar);
free_vector(fi,1,nvar);

There are boundary value problems where even shooting to afitting point fails
— the integration interval has to be partitioned by severa fitting points with the
solution being matched at each such point. For more details see[1].

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America).

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§87.3.5-7.3.6. [1]

17.3 Relaxation Methods

In relaxation methods we replace ODEs by approximate finite-difference equations
(FDEs) on a grid or mesh of points that spans the domain of interest. As atypical example,
we could replace a general first-order differential equation

d
ﬁ = g(z,y) (17.3.2)
with an algebraic equation relating function values at two points k, k — 1:
i — Y1 — (2k —2h-1) g [5(2k + 2h-1), 3 (e + yr—1)] =0 (17.3.2)

The form of the FDE in (17.3.2) illustrates the idea, but not uniquely: There are many
ways to turn the ODE into an FDE. When the problem involves N coupled first-order ODES
represented by FDEs on a mesh of M points, a solution consists of valuesfor N dependent
functions given at each of the M mesh points, or N x M variablesin al. The relaxation
method determines the solution by starting with a guess and improving it, iteratively. Asthe
iterations improve the solution, the result is said to relax to the true solution.

While several iteration schemes are possible, for most problems our old standby, multi-
dimensional Newton’s method, works well. The method produces a matrix equation that
must be solved, but the matrix takes a special, “block diagonal” form, that allows it to be
inverted far more economically both in time and storage than would be possible for a general
matrix of size (MN) x (MN). Since M N can easily be several thousand, this is crucial
for the feasibility of the method.

Our implementation couples a most pars of points, as in equation
(17.3.2). More points can be coupled, but then the method becomes more complex.
We will provide enough background so that you can write a more general scheme if you
have the patience to do so.

Let usdevelopageneral set of algebraic equationsthat represent the ODEsby FDES. The
ODE problem is exactly identical to that expressed in equations (17.0.1)—(17.0.3) where we
had N coupledfirst-order equationsthat satisfy n, boundary conditionsat z; andns = N —ny
boundary conditions at z». We first define a mesh or grid by aset of £ = 1,2, ..., M points
at which we supply values for the independent variable x;. In particular, x; is the initial
boundary, and x» is the final boundary. We use the notation y,, to refer to the entire set of

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



17.3 Relaxation Methods 763

dependent variables y1, y2, . . . , yn~ at point zx. At an arbitrary point & in the middle of the
mesh, we approximate the set of NV first-order ODEs by algebraic relations of the form

0=Ex = Ye = Y1 — (Ik — Ik_l)gk(wk,xk_l,yk,yk_l), k= 2, 3, ey M (1733)

The notation signifies that g, can be evaluated using information from both points k, £ — 1.
The FDEs labeled by E; provide N equations coupling 2N variables at points k, k — 1.
Thereare M — 1 points, k = 2,3, ..., M, at which difference equations of the form (17.3.3)
apply. Thusthe FDEs provide atotal of (M — 1) N equationsfor the M N unknowns. The
remaining N equations come from the boundary conditions.

At the first boundary we have

0=E; =B(z1,y,;) (17.3.4)
while at the second boundary
0= E]u+1 = C(I]u,ij) (1735)

The vectors E; and B have only ny nonzero components, corresponding to the n; boundary
conditions at 1. It will turn out to be useful to take these nonzero components to be the
last n1 components. In other words, E;1 # 0 only for j = no + 1,n2 +2,...,N. At
the other boundary, only the first n, componentsof Ex;+1 and C are nonzero: Ej ar+1 # 0
only for j = 1,2,...,n2.

The “solution” of the FDE problem in (17.3.3)—«(17.3.5) consists of a set of variables
yj,k, the values of the N variables y; at the M points zx. The algorithm we describe
below requires an initial guess for the y; . We then determine increments Ay; . such that
Y,k + Ay, IS an improved approximation to the solution.

Equations for the increments are developed by expanding the FDESs in first-order Taylor
series with respect to small changes Ay, . At aninterior point, k£ = 2,3,..., M thisgives:

Er(Ye + AYs, Y1 AV 1) ~ Ee(Yy, Y1)

N N

OEy OEk
E Ayn - E Ayn
i n=1 Wn. -1 Yok OYn.k Yok

(17.3.6)

n=1

For a solution we want the updated value E(y + Ay) to be zero, so the general set of equations
at an interior point can be written in matrix form as

N 2N
> SinAyng-1+ > SjaAyn-nk=—Ejk, j=12,...,N (17.3.7)
n=1 n=N+1
where
OF; i OF; i
Sjp = =2k g =k 12 N 17.38
7 8yn,k—1 SN 8yn,k " ( )

The quantity S; ., isan N x 2N matrix at each point k. Each interior point thus supplies a
block of N equationscoupling 2N correctionsto the solution variables at the pointsk, k — 1.

Similarly, the algebraic relations at the boundaries can be expanded in a first-order
Taylor series for increments that improve the solution. Since E; depends only ony,, we
find at the first boundary:

N
> SinAyny =—Ej1, j=na+lna+2,... N (17.3.9)
n=1
where
OF;1
Sim = =22, =12,...,N 17.3.10
Js 8yn,1 n ( )
At the second boundary,
N
> SinAyny =—Ejnmi1, j=1,2,...,n2 (17.3.11)

n=1

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



764 Chapter 17.  Two Point Boundary Value Problems

where

OFE;
Sj,n _ 5 3, M+1
Yn,M

We thus have in equations (17.3.7)—(17.3.12) a set of linear equations to be solved for
the corrections Ay, iterating until the corrections are sufficiently small. The eguations have
aspecial structure, because each S; ,, couplesonly points k, k — 1. Figure 17.3.1 illustrates
the typical structure of the complete matrix equation for the case of 5 variables and 4 mesh
points, with 3 boundary conditions at the first boundary and 2 at the second. The 3 x 5
block of nonzero entries in the top left-hand corner of the matrix comes from the boundary
condition Sj,, at point & = 1. The next three 5 x 10 blocks are the S;,, at the interior
points, coupling variables at mesh points (2,1), (3,2), and (4,3). Finally we have the block
corresponding to the second boundary condition.

We can solve equations (17.3.7)—(17.3.12) for the increments Ay using a form of
Gaussian elimination that exploits the special structure of the matrix to minimize the total
number of operations, and that minimizes storage of matrix coefficients by packing the
elements in a special blocked structure. (You might wish to review Chapter 2, especially
§2.2, if you are unfamiliar with the steps involved in Gaussian elimination.) Recall that
Gaussian elimination consists of manipulating the equations by elementary operations such
as dividing rows of coefficients by a common factor to produce unity in diagonal elements,
and adding appropriate multiples of other rows to produce zeros below the diagonal. Here
we take advantage of the block structure by performing a bit more reduction than in pure
Gaussian elimination, so that the storage of coefficients is minimized. Figure 17.3.2 shows
the form that we wish to achieve by elimination, just prior to the backsubstitution step. Only a
small subset of the reduced M N x M N matrix elements needsto be stored as the elimination
progresses. Once the matrix elements reach the stage in Figure 17.3.2, the solution follows
quickly by a backsubstitution procedure.

Furthermore, the entire procedure, except the backsubstitution step, operates only on
one block of the matrix at a time. The procedure contains four types of operations: (1)
partial reduction to zero of certain elements of a block using results from a previous step,
(2) elimination of the square structure of the remaining block elements such that the square
section contains unity along the diagonal, and zero in off-diagonal elements, (3) storage of the
remaining nonzero coefficients for usein later steps, and (4) backsubstitution. We illustrate
the steps schematically by figures.

Consider the block of equationsdescribing correctionsavailablefrom theinitial boundary
conditions. We haven; equationsfor N unknown corrections. We wish to transform the first
block so that its left-hand 1 x m1 square section becomes unity along the diagonal, and zero
in off-diagonal elements. Figure 17.3.3 shows the original and final form of the first block
of the matrix. In the figure we designate matrix elements that are subject to diagonalization
by “D”, and elements that will be altered by “A”; in the final block, elements that are stored
are labeled by “S’. We get from start to finish by selecting in turn n, “pivot” elements from
among thefirst n; columns, normalizing the pivot row so that the value of the“ pivot” element
is unity, and adding appropriate multiples of this row to the remaining rows so that they
contain zerosin the pivot column. In itsfinal form, the reduced block expressesvaluesfor the
corrections to the first ny variables at mesh point 1 in terms of values for the remaining n.
unknown corrections at point 1, i.e., we now know what the first n, elementsare in terms of
the remaining n elements. We store only the final set of n, nonzero columnsfrom the initial
block, plus the column for the altered right-hand side of the matrix equation.

We must emphasize here an important detail of the method. To exploit the reduced
storage allowed by operating on blocks, it is essential that the ordering of columns in the
s matrix of derivatives be such that pivot elements can be found among the first n, rows
of the matrix. This means that the n; boundary conditions at the first point must contain
some dependenceon thefirst j=1,2, . ..,n; dependentvariables, y [j1 [1]. If not, then the
original squaren; x n; subsection of the first block will appear to be singular, and the method
will fail. Alternatively, we would have to allow the search for pivot elements to involve all
N columns of the block, and this would reguire column swapping and far more bookkeeping.
The code provides a simple method of reordering the variables, i.e., the columns of the s
matrix, so that this can be done easily. End of important detail.

n=12...,N (17.3.12)

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



765

17.3 Relaxation Methods

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)
Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software.

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-
readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs
visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

[aalaafyanlyaa o' R an Ry aa Ryaa Raa}

>>>>>>>>>

XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

X X X
X X X
X X X
X X X
X X X

XX XX XXXXXX
XX XX XXXXXX
XX XXXXXXXX
XX XXXXXXXX
XX XX XXXXXX

XX XXX XXXXX

XX XXXXXXXX

\%
\%
\%
\%
\%
\%
\%

XXXXXXXXXX
XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX

XXXXXXXXXX

XX XXX
XX XXX

Matrix structure of a set of linear finite-difference equations (FDES) with boundary

Figure 17.3.1.

conditions imposed at both endpoints. Here X represents a coefficient of the FDEs, V represents a
component of the unknown solution vector, and B is a component of the known right-hand side. Empty

spaces represent zeros. The matrix equation is to be solved by a specia form of Gaussian elimination.

(See text for details)

[aa e yanlyaaaayanlyaalyaa aa Ryan Ryaaoa aalyaalyaa Jaa Ryaa Ryaa la'a Jan}

>>>>2>>2>>>>>>>>>>>>>2>

X X X X X

X X X X X
XX X X X -

X X X X X
XXX X X -

—

XX XX X -

X X X
X X X

—

—

—

Figure 17.3.2. Target structure of the Gaussian elimination. Once the matrix of Figure 17.3.1 has been

reduced to this form, the solution follows quickly by backsubstitution.



Two Point Boundary Value Problems

Chapter 17.

766

\%
\%
\%

() DDDAA

DDDAA
DDDAA

\%
\%

(b)) 100SS

010SS

Sample page from NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5)

Copyright (C) 1988-1992 by Cambridge University Press. Programs Copyright (C) 1988-1992 by Numerical Recipes Software.

Permission is granted for internet users to make one paper copy for their own personal use. Further reproduction, or any copying of machine-
readable files (including this one) to any server computer, is strictly prohibited. To order Numerical Recipes books, diskettes, or CDROMs
visit website http://www.nr.com or call 1-800-872-7423 (North America only), or send email to trade@cup.cam.ac.uk (outside North America).

g z
. =
e =
o3 e}
S G}
o .
5 o
(=] ™
= =
£ o
x
m numnagcgcc< nunuunununuunnmunoy _Wv NV nunuunnnon
£ =
y £
s >>>>>>>> >>>>>>>> X >>>>>>> >>>>>>
] 52 ®
o £
<8
8 g 2
> um <c<<C << nOnno 2 NnnumOuNnAoa NN
g o << wOnnon g nOunnuaoa NOOOO -
) [aWalala¥al cocooo- 8 OOOOCHNN OOOO-HO
Q ]
n 2% [agalalala] [cNoNeR_No) O OO0OO-HdONN OOO+HdO0OOo
n W\% [alalalalal co-doo .m\nnw OCOHOONN OOHOOO
- =2 nnunnoaononon NNNOoO—Ho00O E£F odooo o-dooo
o £¢ nnuMNOoONQON NVNHOOoOO mm 4oooo d4o0oooo
o 58 OOENNNNN OO-“OOO0OOO 55§ coooo coooo
g OHONNNNN O-HdOOOOOO m,m ocoocoo coooo
8= HOONNNNN HOoOOOOOOO g¥ coooo coooo
as 28
5 ¥ — ~ < — —~
.mw © e) .mn/mw © o)
mu N 2 e N =
[}
xXs Mm
5 2
o £ < g
M5 k=
NG= N~
— — O
o g o~
5g 3E
L O iL S

00001

Reduction process for the last (lower right) block of the matrix in Figure 17.3.1. (a)

Original form, (b) final form. (See text for explanation.)

Figure 17.3.5.



17.3 Relaxation Methods 767

Next consider the block of N equationsrepresenting the FDEs that describe the relation
betweenthe 2N correctionsat points2 and 1. The elementsof that block, together with results
from the previous step, areillustrated in Figure 17.3.4. Note that by adding suitable multiples
of rows from the first block we can reduce to zero the first ny columns of the block (labeled
by “Z"), and, to do so, we will need to alter only the columns from n; + 1 to N and the
vector element on the right-hand side. Of the remaining columnswe can diagonalize a square
subsectionof N x N elements, labeled by “D” in the figure. In the process we alter the final
set of ny + 1 columns, denoted “A” in the figure. The second half of the figure shows the
block when we finish operating on it, with the stored (n2 + 1) x N elementslabeled by “S.”

If we operate on the next set of equations correspondingto the FDES coupling corrections
at points3 and 2, we seethat the state of available results and new equationsexactly reproduces
the situation described in the previous paragraph. Thus, we can carry out those steps again
for each block in turn through block A1. Finally on block M + 1 we encounter the remaining
boundary conditions.

Figure 17.3.5 shows the final block of n, FDEsrelating the N corrections for variables
at mesh point M, together with the result of reducing the previous block. Again, we can first
use the prior results to zero the first n1 columns of the block. Now, when we diagonalize
the remaining sguare section, we strike gold: We get values for the final no corrections
at mesh point M.

With the final block reduced, the matrix has the desired form shown previously in
Figure 17.3.2, and the matrix is ripe for backsubstitution. Starting with the bottom row and
working up towards the top, at each stage we can simply determine one unknown correction
in terms of known quantities.

The function solvde organizes the steps described above. The principal procedures
used in the algorithm are performed by functions called internally by solvde. The function
red eliminates leading columns of the s matrix using results from prior blocks. pinvs
diagonalizes the square subsection of s and stores unreduced coefficients. bksub carries
out the backsubstitution step. The user of solvde must understand the calling arguments,
as described below, and supply a function difeq, called by solvde, that evaluates the s
matrix for each block.

Most of the arguments in the call to solvde have aready been described, but some
require discussion. Array y[j1 [k] containsthe initial guessfor the solution, with j labeling
the dependent variables at mesh points k. The problem involves ne FDES spanning points
k=1,..., m. nb boundary conditions apply at the first point k=1. The array indexv[j]
establishesthe correspondencebetween columnsof the s matrix, equations(17.3.8), (17.3.10),
and (17.3.12), and the dependent variables. As described above it is essential that the nb
boundary conditionsat k=1 involve the dependent variables referenced by thefirst nb columns
of the s matrix. Thus, columns j of the s matrix can be ordered by the user in difeq to refer
to derivatives with respect to the dependent variable indexv [j].

Thefunction only attempts i tmax correction cyclesbefore returning, evenif the solution
has not converged. The parameters conv, slowc, scalv relate to convergence. Each
inversion of the matrix produces corrections for ne variablesat m mesh points. We want these
to become vanishingly small as the iterations proceed, but we must define a measure for the
size of corrections. This error “norm” is very problem specific, so the user might wish to
rewrite this section of the code as appropriate. In the program below we compute a value for
the average correction err by summing the absolute value of al corrections, weighted by a
scale factor appropriate to each type of variable:

m ne

err— — 1 Z Z 14Y T3] ]| (17.3.13)

m X ne scalv[j]

When err<conv, the method has converged. Note that the user gets to supply an array
scalv which measures the typical size of each variable.

Obvioudly, if err is large, we are far from a solution, and perhaps it is a bad idea
to believe that the corrections generated from a first-order Taylor series are accurate. The
number slowc modulates application of corrections. After each iteration we apply only a

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



768 Chapter 17.  Two Point Boundary Value Problems

fraction of the corrections found by matrix inversion:

slowc

Y (31 k] — V3] [k] + AY [§] (] (17.3.14)

max(slowc,err)
Thus, when err>slowc only a fraction of the corrections are used, but when err<slowc
the entire correction gets applied.

The call statement also supplies solvde with the array y[1..nyj][1..nyk] con-
taining the initial trial solution, and workspace arrays c[1..ne] [1. .ne-nb+1] [1..m+1],
s[1..nel[1..2%ne+1]. The array c is the blockbuster: It stores the unreduced elements
of the matrix built up for the backsubstitution step. If there are m mesh points, then there
will be m+1 blocks, each requiring ne rows and ne-nb+1 columns. Although large, this
is small compared with (nexm)? elements required for the whole matrix if we did not
break it into blocks.

We now describe the workings of the user-supplied function difeq. The synopsis of
the function is

void difeq(int k, int k1, int k2, int jsf, int isl, int isf,
int indexv[], int ne, float **s, float **y);

The only information passed from difeq to solvde is the matrix of derivatives
s[1..ne]l[1..2*ne+1]; al other arguments are input to difeq and should not be altered.
k indicates the current mesh point, or block humber. k1,k2 label the first and last point in
the mesh. If k=k1 or k>k2, the block involves the boundary conditions at the first or final
points; otherwise the block acts on FDEs coupling variables at pointsk-1, k.

The convention on storing information into the array s[i] [j] follows that used in
equations (17.3.8), (17.3.10), and (17.3.12): Rows i label equations, columns j refer to
derivatives with respect to dependent variablesin the solution. Recall that each equation will
depend on the ne dependent variables at either one or two points. Thus, j runs from 1 to
either ne or 2+ne. The column ordering for dependent variables at each point must agree
with the list supplied in indexv[j]. Thus, for a block not at a boundary, the first column
multiplies AY (1=indexv [1] ,k-1), andthecolumnne+1 multiplies AY (1=indexv[1],k).
is1,isf givethe numbers of the starting and final rowsthat need to be filled in the s matrix
for this block. jsf labels the column in which the difference equations E; ;, of eguations
(17.3.3)«17.3.5) are stored. Thus, —s[i] [jsf] isthe vector on the right-hand side of the
matrix. The reason for the minus sign is that difeq supplies the actual difference equation,
E; 1, not its negative. Note that solvde supplies a value for jsf such that the difference
equation is put in the column just after all derivativesin the s matrix. Thus, difeq expectsto
find values entered into s [i] [j] forrowsis1 < i < isfand1 < j < jsf.

Finally, s[1..nsil[1..nsj] and y[1..nyj]l[1..nyk] supply difeq with storage
for s and the solution variables y for this iteration. An example of how to use this routine
is given in the next section.

Many ideas in the following code are due to Eggleton [1].

#include <stdio.h>
#include <math.h>
#include "nrutil.h"

void solvde(int itmax, float conv, float slowc, float scalv[], int indexv[],
int ne, int nb, int m, float *xy, float ***c, float **s)

Driver routine for solution of two point boundary value problems by relaxation. itmax is the
maximum number of iterations. conv is the convergence criterion (see text). slowc controls
the fraction of corrections actually used after each iteration. scalv[1..ne] contains typical
sizes for each dependent variable, used to weight errors. indexv[1..ne] lists the column
ordering of variables used to construct the matrix s[1. .ne] [1..2*ne+1] of derivatives. (The
nb boundary conditions at the first mesh point must contain some dependence on the first nb
variables listed in indexv.) The problem involves ne equations for ne adjustable dependent
variables at each point. At the first mesh point there are nb boundary conditions. There are a
total of m mesh points. y[1..ne] [1..m] is the two-dimensional array that contains the initial
guess for all the dependent variables at each mesh point. On each iteration, it is updated by the

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



17.3 Relaxation Methods 769

calculated correction. The arrays c[1..ne] [1..ne-nb+1][1..m+1] and s supply dummy
storage used by the relaxation code.

{

void bksub(int ne, int nb, int jf, int k1, int k2, float **xc);

void difeq(int k, int k1, int k2, int jsf, int isl, int isf,
int indexv[], int ne, float **s, float *xy);

void pinvs(int iel, int ie2, int jel, int jsf, int jcl, int k,
float **xc, float **s);

void red(int izl, int iz2, int jzl, int jz2, int jml, int jm2, int jmf,
int icl, int jcl, int jcf, int kc, float ***c, float **s);

int icl,ic2,ic3,ic4,it,j,j1,j2,3j3,j4,j5,36,37,38,79;

int jci,jcf,jv,k,kl1,k2,km,kp,nvars, *kmax;

float err,errj,fac,vmax,vz,*ermax;

kmax=ivector(1,ne);
ermax=vector (1,ne);
k1=1; Set up row and column markers.
k2=m;
nvars=ne*m;
j1=1;
j2=nb;
j3=nb+1;
j4=ne;
j5=j4+j1;
j6=34+j2;
Jj7=34+j3;
j8=j4+j4;
j9=38+j1;
icl=1;
ic2=ne-nb;
ic3=ic2+1;
ic4d=ne;
jcl=1;
jcf=ic3;
for (it=1;it<=itmax;it++) { Primary iteration loop.
k=k1; Boundary conditions at first point.
difeq(k,k1,k2,j9,ic3,ic4,indexv,ne,s,y);
pinvs(ic3,ic4,j5,j9,jcl,kl,c,s);
for (k=ki1+1;k<=k2;k++) {
kp=k-1;
difeq(k,k1,k2,j9,icl,ic4,indexv,ne,s,y);
red(icl,ic4,j1,j2,33,j4,j9,1ic3,jcl, jcf kp,c,s);
pinvs(icl,ic4,j3,j9,jcl,k,c,s);

Finite difference equations at all point pairs.

}

k=k2+1; Final boundary conditions.
difeq(k,k1,k2,j9,icl,ic2,indexv,ne,s,y);
red(icl,ic2,j5,j6,i7,38,j9,ic3,jcl,jcf,k2,c,s);
pinvs(icl,ic2,j7,j9,jcf ,k2+1,c,s);

bksub(ne,nb, jcf,k1,k2,c); Backsubstitution.
err=0.0;
for (j=1;j<=ne;j++) { Convergence check, accumulate average er-
jv=indexv[j]; ror.
errj=vmax=0.0;
km=0;
for (k=k1;k<=k2;k++) { Find point with largest error, for each de-
vz=fabs(c[jv] [1] [k]); pendent variable.
if (vz > vmax) {
vmax=vz;
km=k;
}

errj += vz;
}
err += errj/scalvljl;
ermax [jl=c[jv][1] [km]/scalv[j]l;

Note weighting for each dependent variable.

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes



770

Chapter 17.  Two Point Boundary Value Problems

kmax [j]=km;
}
err /= nvars;
fac=(err > slowc ? slowc/err : 1.0);
Reduce correction applied when error is large.
for (j=1;j<=ne;j++) { Apply corrections.
jv=indexv[j];
for (k=k1;k<=k2;k++)
y[j1[k] -= fac*c[jv] [1][k];

}
printf ("\n%8s %9s %9s\n","Iter.","Error","FAC"); Summary of corrections
printf ("%6d4 %12.6f %11.6f\n",it,err,fac); for this step.
if (err < conv) { Point with largest error for each variable can
free_vector(ermax,1,ne); be monitored by writing out kmax and
free_ivector (kmax,1,ne); ermax.
return;
}
}
nrerror ("Too many iterations in solvde"); Convergence failed.

void bksub(int ne, int nb, int jf, int k1, int k2, float ***c)
Backsubstitution, used internally by solvde.

{

int nbf,im,kp,k,j,i;
float xx;

nbf=ne-nb;

im=1;

for (k=k2;k>=kl;k--) { Use recurrence relations to eliminate remaining de-
if (k == k1) im=nbf+1; pendences.
kp=k+1;

for (j=1;j<=nbf;j++) {
xx=c[j] [j£] [kp];
for (i=im;i<=ne;i++)

clil [§£1 k] -= c[1] [j] (k] *xx;

}
}
for (k=kl;k<=k2;k++) { Reorder corrections to be in column 1.
kp=k+1;
for (i=1;i<=nb;i++) c[i] [1] [kl=c[i+nbf] [j£][k];
for (i=1;i<=nbf;i++) c[i+nb] [1] [k]=c[i] [j£] [kp];
}

#include <math.h>
#include "nrutil.h"

void pinvs(int iel, int ie2, int jel, int jsf, int jcl, int k, float ***c,

float **s)

Diagonalize the square subsection of the s matrix, and store the recursion coefficients in c;

used

{

internally by solvde.

int jsi,jpiv,jp,je2,jcoff,j,irow,ipiv,id,icoff,i,*indxr;
float pivinv,piv,dum,big,*pscl;

indxr=ivector(iel,ie2);
pscl=vector(iel,ie2);
je2=jel+ie2-iel;
jsl=je2+1;

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD



17.3 Relaxation Methods 771

for (i=iel;i<=ie2;i++) { Implicit pivoting, as in §2.1.
big=0.0;
for (j=jel;j<=je2;j++)
if (fabs(s[il[j]) > big) big=fabs(s[il[j1);

if (big == 0.0) nrerror("Singular matrix - row all O, in pinvs");
pscl[i]=1.0/big;
indxr[i]=0;
}
for (id=iel;id<=ie2;id++) {
piv=0.0;
for (i=iel;i<=ie2;i++) { Find pivot element.
if (indxr[i] == 0) {
big=0.0;
for (j=jel;j<=je2;j++) {
if (fabs(s[il[j1) > big) {
jp=J;
big=fabs(s[i] [j1);
}
}
if (big*pscl[i] > piv) {
ipiv=i;
jpiv=jp;
piv=big*pscl[i];
}
}
}
if (s[ipiv] [jpiv] == 0.0) nrerror("Singular matrix in routine pinvs");
indxr[ipiv]=jpiv; In place reduction. Save column ordering.
pivinv=1.0/s[ipiv] [jpiv];
for (j=jel;j<=jsf;j++) slipiv] [j] *= pivinv; Normalize pivot row.
s[ipiv] [jpiv]=1.0;
for (i=iel;i<=ie2;i++) { Reduce nonpivot elements in column.
if (indxr[i] !'= jpiv) {
if (s[i][jpiv]) {
dum=s[i] [jpiv];
for (j=jel;j<=jsf;j++)
s[i]1[j]1 -= dumxs[ipiv] [j];
s[i]1[jpiv]=0.0;
}
}
}
}
jecoff=jcl-jsi; Sort and store unreduced coefficients.

icoff=iel-jel;
for (i=iel;i<=ie2;i++) {

irow=indxr[i]+icoff;

for (j=jsl;j<=jsf;j++) clirow] [j+jcoff] [kl=s[i] [j];
}
free_vector(pscl,iel,ie2);
free_ivector(indxr,iel,ie2);

void red(int izl, int iz2, int jzl, int jz2, int jml, int jm2, int jmf,
int icl, int jcl, int jcf, int kc, float **xc, float **s)
Reduce columns jz1-3jz2 of the s matrix, using previous results as stored in the ¢ matrix. Only
columns jm1-jm2, jmf are affected by the prior results. red is used internally by solvde.
{
int loff,1,j,ic,i;
float vx;

loff=jcl-jmi;
ic=icl;

"(eduBWY YUON 8pISIN0) yn'oe’weo dno@apel: 0} Jlews puas 1o ‘(AJuo eouswy YUON) £24/-2/8-008-T [0 J0 Woo Ju MMM//:dny SlISCam IISIA

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad



772 Chapter 17.  Two Point Boundary Value Problems

for (j=jzl;j<=jz2;j++) {
for (1=jml;1<=jm2;1++) {
vx=c[ic] [1+1loff] [kc];

Loop over columns to be zeroed.
Loop over columns altered.

for (i=izl;i<=iz2;i++) s[i][1] -= s[i] [j1*vx; Loop over rows.
}
vx=c[ic] [jcf] [kc];
for (i=izl;i<=iz2;i++) s[il[jmf] -= s[i] [j]*vx; Plus final element.
ic += 1;

“Algebraically Difficult” Sets of Differential Equations

Relaxation methods allow you to take advantage of an additional opportunity that, while
not obvious, can speed up some calculations enormously. It is not necessary that the set
of variables y;, . correspond exactly with the dependent variables of the original differential
equations. They can be related to those variables through algebraic equations. Obviously, it
is necessary only that the solution variables allow us to evaluate the functions y, g, B, C that
are used to construct the FDEs from the ODESs. In some problems g depends on functions of
y that are known only implicitly, so that iterative solutions are necessary to evaluate functions
in the ODEs. Often one can dispense with this “internal” nonlinear problem by defining
a new set of variables from which both y, g and the boundary conditions can be obtained
directly. A typical example occursin physical problemswhere the equations require solution
of acomplex equation of state that can be expressed in more convenient terms using variables
other than the original dependent variables in the ODE. While this approach is analogous to
performing an analytic change of variables directly on the original ODEs, such an analytic
transformation might be prohibitively complicated. The change of variablesin the relaxation
method is easy and requires no analytic manipulations.

CITED REFERENCES AND FURTHER READING:

Eggleton, P.P. 1971, Monthly Notices of the Royal Astronomical Society, vol. 151, pp. 351-364.
(1

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Kippenhan, R., Weigert, A., and Hofmeister, E. 1968, in Methods in Computational Physics,
vol. 7 (New York: Academic Press), pp. 129ff.

17.4 A Worked Example: Spheroidal Harmonics

The best way to understand the algorithms of the previous sections is to see
them employed to solve an actual problem. As a sample problem, we have sel ected
the computation of spheroidal harmonics. (The more common name is spheroidal
angle functions, but we prefer the explicit reminder of the kinship with spherical
harmonics) We will show how to find spheroidal harmonics, first by the method
of relaxation (§17.3), and then by the methods of shooting (§17.1) and shooting
to a fitting point (§17.2).

Spheroida harmonics typically arise when certain partia differentia
equations are solved by separation of variables in spheroida coordinates. They
satisfy the following differential equation on theinterval —1 < x < 1:

d [(1_x2)d8]+(A_02x2_1m2 )Szo (17.4.1)

dx dx — 2

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes



