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into equation (5.1.11), and then setting z = 1.

Sometimes you will want to compute a function from a series representation
even when the computationisnot efficient. For example, you may be usingthevalues
obtai ned to fit the function to an approximating form that you will use subsequently
(cf. §5.8). If you are summing very large numbers of slowly convergent terms, pay
attention to roundoff errors! In floating-point representation it is more accurate to
sum alist of numbersin the order starting with the smallest one, rather than starting
with the largest one. It iseven better to group terms pairwise, then in pairs of pairs,
etc., so that all additions involve operands of comparable magnitude.
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5.2 Evaluation of Continued Fractions

Continued fractions are often powerful ways of evaluating functionsthat occur
in scientific applications. A continued fraction looks like this:

ai

flz) =bo+ - (5.2.1)
b1 + %
ba+ Sa
b3+ 4a
b4+b5T5___
Printers prefer to write this as
fla) =bo+ —— 22 B 9 B (5.2.2)

bi+ by+ bs+ bi+ bs+

In either (5.2.1) or (5.2.2), the a’s and b’s can themselves be functions of x, usually
linear or quadratic monomials at worst (i.e., constants times x or times x2). For
example, the continued fraction representation of the tangent function is

xr I2 I2 I2

Continued fractions frequently converge much more rapidly than power series
expansions, and in a much larger domain in the complex plane (not necessarily
including the domain of convergence of the series, however). Sometimes the
continued fraction converges best where the series does worst, athough this is not
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170 Chapter 5.  Evaluation of Functions

ageneral rule. Blanch[1] gives a good review of the most useful convergence tests
for continued fractions.

There are standard techniques, including the important quotient-difference algo-
rithm, for going back and forth between continued fraction approximations, power
series approximations, and rationa function approximations. Consult Acton [2] for
an introductionto this subject, and Fike[3] for further details and references.

How do you tell how far to go when evaluating a continued fraction? Unlike
a series, you can't just evaluate equation (5.2.1) from left to right, stopping when
the change is small. Written in the form of (5.2.1), the only way to evaluate the
continued fraction is from right to left, first (blindly!) guessing how far out to
start. This is not the right way.

The right way is to use a result that relates continued fractions to rational
approximations, and that gives a means of evaluating (5.2.1) or (5.2.2) from left
to right. Let f,, denote the result of evaluating (5.2.2) with coefficients through
a, and b,. Then

An

In= B, (5.2.4)

where A,, and B,, are given by the following recurrence:
A1 =1 B_1=0
Ag = b By=1
Aj=0bjA4;_1+a;Aj_o Bj =b;Bj_1+a;Bj_» i=12...,n
(5.2.5)

Thismethod wasinvented by J. Wallisin 1655 (), and isdiscussed in his Arithmetica
Infinitorum[4]. You can easily prove it by induction.

In practice, thisalgorithm has some unattractivefeatures: Therecurrence (5.2.5)
frequently generates very large or very small values for the partial numerators and
denominators A; and B;. There is thus the danger of overflow or underflow of the
floating-point representation. However, therecurrence (5.2.5) islinear inthe A’sand
B’s. At any point you can rescale the currently saved two levels of the recurrence,
eg., divide A;, B;, A;_;, and B;_ al by B;. Thisincidentally makes A; = f;
and is convenient for testing whether you have gone far enough: Seeif f; and f;_1
from the last iteration are as close as you would like them to be. (If B; happensto
be zero, which can happen, just skip the renormalization for this cycle. A fancier
level of optimization is to renormalize only when an overflow isimminent, saving
the unnecessary divides. All this complicates the program logic.)

Two newer algorithms have been proposed for evaluating continued fractions.
Steed’s method does not use A; and B; explicitly, but only theratio D; = B;_/B;.
One calculates D; and Af; = f; — fj—1 recursively using

Dj = 1/(()] + CLij_l) (526)
Afj=(bjDj —1)Afj (5.2.7)

Steed’'s method (see, e.g., [5]) avoids the need for rescaling of intermediate results.
However, for certain continued fractions you can occasionaly run into a situation
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5.2 Evaluation of Continued Fractions 171

where the denominator in (5.2.6) approaches zero, so that D; and Af; are very
large. The next Af;1 will typically cancel this large change, but with loss of
accuracy in the numerical running sum of the f;’s. It isawkward to program around
this, so Steed’s method can be recommended only for cases where you know in
advance that no denominator can vanish. We will use it for a specia purpose in
the routine bessik (§6.7).

The best genera method for evaluating continued fractions seems to be the
modified Lentz's method [6]. The need for rescaling intermediate results is avoided
by using both the ratios

Cj=A4;/Aj-1,  Dj=B;_1/B; (528)
and calculating f; by

fi = 1i-1C;D; (529)
From equation (5.2.5), one easily showsthat theratios satisfy the recurrence relations
Dj = 1/(()] + CLij_l), Cj e bj + CLj/Cj_l (5210)

In this agorithm there is the danger that the denominator in the expression for D,
or the quantity C; itself, might approach zero. Either of these conditionsinvalidates
(5.2.10). However, Thompson and Barnett [5] show how to modify Lentz'salgorithm
to fix this: Just shift the offending term by a small amount, e.g., 1073°. If you
work through a cycle of the agorithm with this prescription, you will see that f;:
is accurately calculated.

In detail, the modified Lentz's agorithm is this:

.Sdfozbo; |fb0:OSHf0:t’LTLy

e Set Cy = fo.
L SﬂDQ = 0.
e For j =1,2,...

Set Dj = bj + CLij_l.
Set Cj = bj + CLj/Cj_l.

Set D; = 1/D;.
Set fj = fi-14;.

If |A; — 1] < eps then exit.
Here eps is your floating-point precision, say 107 or 10~'°. The parameter tiny
should be less than typical values of eps|b;|, say 10730,

The above agorithm assumes that you can terminate the evaluation of the
continued fraction when | f; — f;_1]| is sufficiently small. Thisis usually the case,
but by no means guaranteed. Jones[7] gives alist of theorems that can be used to
justify this termination criterion for various kinds of continued fractions.

Thereisat present no rigorousanalysisof error propagationin Lentz'salgorithm.
However, empirical tests suggest that it is at least as good as other methods.
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172 Chapter 5.  Evaluation of Functions

Manipulating Continued Fractions

Several important properties of continued fractions can be used to rewrite them
in formsthat can speed up numerical computation. An equivalence transformation

Ay — Ay, by — Abp,  Qpi1 — Aapta (5.2.11)

leaves the value of a continued fraction unchanged. By a suitable choice of the scale
factor A you can often simplify the form of the o’s and the b's. Of course, you
can carry out successive equivalence transformations, possibly with different \'s, on
successive terms of the continued fraction.

The even and odd parts of a continued fraction are continued fractions whose
successive convergents are fa,, and fa,,y1, respectively. Their main useis that they
converge twice as fast asthe original continued fraction, and so if their terms are not
much more complicated than the terms in the original there can be abig savingsin
computation. The formula for the even part of (5.2.2) is

C1 C2

even — d + 5.2.12
f; 0 di+ do+ ( )
where in terms of intermediate variables
ai
a1 = b_
' (5.2.13)
n= — >2
“ bnbn—l "=
we have
do="by, c1=01, di=1+0
(5.2.14)
Cn = —Qap—102n—2, dn =14 aap_1 + q2p, n>2

You can find the similar formulafor the odd part in the review by Blanch [1]. Often
a combination of the transformations (5.2.14) and (5.2.11) is used to get the best
form for numerical work.

We will make frequent use of continued fractions in the next chapter.
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5.3 Polynomials and Rational Functions

A polynomia of degree N is represented numericaly as a stored array of
coefficients, c[j] with j=0,..., N. Wewill always take c [0] to be the constant
term in the polynomial, c [ V] the coefficient of 2”V; but of course other conventions
arepossible. Therearetwo kindsof manipulationsthat you can do with apolynomial:
numerical manipulations (such as evaluation), where you are given the numerical
value of its argument, or algebraic manipulations, where you want to transform
the coefficient array in some way without choosing any particular argument. Let’s
start with the numerical.

We assume that you know enough never to evaluate a polynomial thisway:

p=c[0]+c [1]*x+c [2] *x*kx+c [3] *x*x*x+c [4] *xkx*X*X ;

or (even worse!),

p=c[0]+c[1]*x+c [2] *pow (x,2.0)+c[3]*pow(x,3.0)+c[4]*pow(x,4.0);

Come the (computer) revolution, all persons found guilty of such criminal
behavior will be summarily executed, and their programs won't be! It is a matter
of taste, however, whether to write

p=c [0]+x* (c[1]+x*(c[2]+x*(c[3]+x*c[4]1)));

or
p=(((c[4]*x+c[3]) *x+c[2])*x+c [1]) *x+c[0];

If the number of coefficients c[0..n] islarge, one writes

p=clnl;
for(j=n-1;3j>=0;j--) p=p*x+c[jl;

or

p=clj=nl;
while (j>0) p=p*x+c[--j];

Another useful trick is for evauating a polynomial P(z) and its derivative
dP(z)/dx simultaneously:

p=clnl;
dp=0.0;
for(j=n-1;3j>=0;j--) {dp=dp*x+p; p=p*x+c[j]l;}
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