
5.2 Evaluation of Continued Fractions 169

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

into equation (5.1.11), and then setting z = 1.
Sometimes you will want to compute a function from a series representation

even when the computation is not efficient. For example, you may be using the values
obtained to fit the function to an approximating form that you will use subsequently
(cf. §5.8). If you are summing very large numbers of slowly convergent terms, pay
attention to roundoff errors! In floating-point representation it is more accurate to
sum a list of numbers in the order starting with the smallest one, rather than starting
with the largest one. It is even better to group terms pairwise, then in pairs of pairs,
etc., so that all additions involve operands of comparable magnitude.

CITED REFERENCES AND FURTHER READING:

Goodwin, E.T. (ed.) 1961, Modern Computing Methods, 2nd ed. (New York: Philosophical Li-
brary), Chapter 13 [van Wijngaarden’s transformations]. [1]

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
Chapter 3.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §3.6.

Mathews, J., and Walker, R.L. 1970, Mathematical Methods of Physics, 2nd ed. (Reading, MA:
W.A. Benjamin/Addison-Wesley), §2.3. [2]

5.2 Evaluation of Continued Fractions

Continued fractions are often powerful ways of evaluating functions that occur
in scientific applications. A continued fraction looks like this:

f(x) = b0 +
a1

b1 +
a2

b2+
a3

b3+
a4

b4+
a5

b5+···

(5.2.1)

Printers prefer to write this as

f(x) = b0 +
a1

b1 +

a2

b2 +

a3

b3 +

a4

b4 +

a5

b5 +
· · · (5.2.2)

In either (5.2.1) or (5.2.2), the a’s and b’s can themselves be functions of x, usually
linear or quadratic monomials at worst (i.e., constants times x or times x2). For
example, the continued fraction representation of the tangent function is

tanx =
x

1−
x2

3−
x2

5−
x2

7− · · · (5.2.3)

Continued fractions frequently converge much more rapidly than power series
expansions, and in a much larger domain in the complex plane (not necessarily
including the domain of convergence of the series, however). Sometimes the
continued fraction converges best where the series does worst, although this is not

170 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

a general rule. Blanch [1] gives a good review of the most useful convergence tests
for continued fractions.

There are standard techniques, including the important quotient-difference algo-
rithm, for going back and forth between continued fraction approximations, power
series approximations, and rational function approximations. Consult Acton [2] for
an introduction to this subject, and Fike [3] for further details and references.

How do you tell how far to go when evaluating a continued fraction? Unlike
a series, you can’t just evaluate equation (5.2.1) from left to right, stopping when
the change is small. Written in the form of (5.2.1), the only way to evaluate the
continued fraction is from right to left, first (blindly!) guessing how far out to
start. This is not the right way.

The right way is to use a result that relates continued fractions to rational
approximations, and that gives a means of evaluating (5.2.1) or (5.2.2) from left
to right. Let fn denote the result of evaluating (5.2.2) with coefficients through
an and bn. Then

fn =
An
Bn

(5.2.4)

where An and Bn are given by the following recurrence:

A−1 ≡ 1 B−1 ≡ 0

A0 ≡ b0 B0 ≡ 1

Aj = bjAj−1 + ajAj−2 Bj = bjBj−1 + ajBj−2 j = 1, 2, . . . , n

(5.2.5)

This method was invented by J. Wallis in 1655 (!), and is discussed in his Arithmetica
Infinitorum [4]. You can easily prove it by induction.

In practice, this algorithm has some unattractive features: The recurrence (5.2.5)
frequently generates very large or very small values for the partial numerators and
denominators Aj and Bj . There is thus the danger of overflow or underflow of the
floating-point representation. However, the recurrence (5.2.5) is linear in theA’s and
B’s. At any point you can rescale the currently saved two levels of the recurrence,
e.g., divide Aj, Bj , Aj−1, and Bj−1 all by Bj . This incidentally makes Aj = fj
and is convenient for testing whether you have gone far enough: See if fj and fj−1

from the last iteration are as close as you would like them to be. (If Bj happens to
be zero, which can happen, just skip the renormalization for this cycle. A fancier
level of optimization is to renormalize only when an overflow is imminent, saving
the unnecessary divides. All this complicates the program logic.)

Two newer algorithms have been proposed for evaluating continued fractions.
Steed’s method does not useAj andBj explicitly, but only the ratioDj = Bj−1/Bj .
One calculates Dj and ∆fj = fj − fj−1 recursively using

Dj = 1/(bj + ajDj−1) (5.2.6)

∆fj = (bjDj − 1)∆fj−1 (5.2.7)

Steed’s method (see, e.g., [5]) avoids the need for rescaling of intermediate results.
However, for certain continued fractions you can occasionally run into a situation

5.2 Evaluation of Continued Fractions 171

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

where the denominator in (5.2.6) approaches zero, so that Dj and ∆fj are very
large. The next ∆fj+1 will typically cancel this large change, but with loss of
accuracy in the numerical running sum of the fj ’s. It is awkward to program around
this, so Steed’s method can be recommended only for cases where you know in
advance that no denominator can vanish. We will use it for a special purpose in
the routine bessik (§6.7).

The best general method for evaluating continued fractions seems to be the
modified Lentz’s method [6]. The need for rescaling intermediate results is avoided
by using both the ratios

Cj = Aj/Aj−1, Dj = Bj−1/Bj (5.2.8)

and calculating fj by

fj = fj−1CjDj (5.2.9)

From equation (5.2.5), one easily shows that the ratios satisfy the recurrence relations

Dj = 1/(bj + ajDj−1), Cj = bj + aj/Cj−1 (5.2.10)

In this algorithm there is the danger that the denominator in the expression for Dj ,
or the quantityCj itself, might approach zero. Either of these conditions invalidates
(5.2.10). However, Thompson and Barnett [5] show how to modify Lentz’s algorithm
to fix this: Just shift the offending term by a small amount, e.g., 10−30. If you
work through a cycle of the algorithm with this prescription, you will see that fj+1

is accurately calculated.
In detail, the modified Lentz’s algorithm is this:

• Set f0 = b0; if b0 = 0 set f0 = tiny.
• Set C0 = f0.
• Set D0 = 0.
• For j = 1, 2, . . .

Set Dj = bj + ajDj−1.
If Dj = 0, set Dj = tiny.
Set Cj = bj + aj/Cj−1.
If Cj = 0 set Cj = tiny.
Set Dj = 1/Dj .
Set ∆j = CjDj .
Set fj = fj−1∆j .
If |∆j − 1| < eps then exit.

Here eps is your floating-point precision, say 10−7 or 10−15. The parameter tiny
should be less than typical values of eps|bj|, say 10−30.

The above algorithm assumes that you can terminate the evaluation of the
continued fraction when |fj − fj−1| is sufficiently small. This is usually the case,
but by no means guaranteed. Jones [7] gives a list of theorems that can be used to
justify this termination criterion for various kinds of continued fractions.

There is at present no rigorousanalysis of error propagation in Lentz’s algorithm.
However, empirical tests suggest that it is at least as good as other methods.

172 Chapter 5. Evaluation of Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Manipulating Continued Fractions

Several important properties of continued fractions can be used to rewrite them
in forms that can speed up numerical computation. An equivalence transformation

an → λan, bn → λbn, an+1 → λan+1 (5.2.11)

leaves the value of a continued fraction unchanged. By a suitable choice of the scale
factor λ you can often simplify the form of the a’s and the b’s. Of course, you
can carry out successive equivalence transformations, possibly with different λ’s, on
successive terms of the continued fraction.

The even and odd parts of a continued fraction are continued fractions whose
successive convergents are f2n and f2n+1, respectively. Their main use is that they
converge twice as fast as the original continued fraction, and so if their terms are not
much more complicated than the terms in the original there can be a big savings in
computation. The formula for the even part of (5.2.2) is

feven = d0 +
c1
d1 +

c2
d2 +

· · · (5.2.12)

where in terms of intermediate variables

α1 =
a1

b1

αn =
an

bnbn−1
, n ≥ 2

(5.2.13)

we have
d0 = b0, c1 = α1, d1 = 1 + α2

cn = −α2n−1α2n−2, dn = 1 + α2n−1 + α2n, n ≥ 2
(5.2.14)

You can find the similar formula for the odd part in the review by Blanch [1]. Often
a combination of the transformations (5.2.14) and (5.2.11) is used to get the best
form for numerical work.

We will make frequent use of continued fractions in the next chapter.

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §3.10.

Blanch, G. 1964, SIAM Review, vol. 6, pp. 383–421. [1]

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 11. [2]

Cuyt, A., and Wuytack, L. 1987, Nonlinear Methods in Numerical Analysis (Amsterdam: North-
Holland), Chapter 1.

Fike, C.T. 1968, Computer Evaluation of Mathematical Functions (Englewood Cliffs, NJ: Prentice-
Hall), §§8.2, 10.4, and 10.5. [3]

Wallis, J. 1695, in Opera Mathematica, vol. 1, p. 355, Oxoniae e Theatro Shedoniano. Reprinted
by Georg Olms Verlag, Hildeshein, New York (1972). [4]

5.3 Polynomials and Rational Functions 173

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Thompson, I.J., and Barnett, A.R. 1986, Journal of Computational Physics, vol. 64, pp. 490–509.
[5]

Lentz, W.J. 1976, Applied Optics, vol. 15, pp. 668–671. [6]

Jones, W.B. 1973, in Padé Approximants and Their Applications, P.R. Graves-Morris, ed. (Lon-
don: Academic Press), p. 125. [7]

5.3 Polynomials and Rational Functions

A polynomial of degree N is represented numerically as a stored array of
coefficients, c[j] with j= 0, . . . , N . We will always take c[0] to be the constant
term in the polynomial, c[N] the coefficient of xN ; but of course other conventions
are possible. There are two kinds of manipulations that you can do with a polynomial:
numerical manipulations (such as evaluation), where you are given the numerical
value of its argument, or algebraic manipulations, where you want to transform
the coefficient array in some way without choosing any particular argument. Let’s
start with the numerical.

We assume that you know enough never to evaluate a polynomial this way:

p=c[0]+c[1]*x+c[2]*x*x+c[3]*x*x*x+c[4]*x*x*x*x;

or (even worse!),

p=c[0]+c[1]*x+c[2]*pow(x,2.0)+c[3]*pow(x,3.0)+c[4]*pow(x,4.0);

Come the (computer) revolution, all persons found guilty of such criminal
behavior will be summarily executed, and their programs won’t be! It is a matter
of taste, however, whether to write

p=c[0]+x*(c[1]+x*(c[2]+x*(c[3]+x*c[4])));

or

p=(((c[4]*x+c[3])*x+c[2])*x+c[1])*x+c[0];

If the number of coefficients c[0..n] is large, one writes

p=c[n];
for(j=n-1;j>=0;j--) p=p*x+c[j];

or

p=c[j=n];
while (j>0) p=p*x+c[--j];

Another useful trick is for evaluating a polynomial P (x) and its derivative
dP (x)/dx simultaneously:

p=c[n];
dp=0.0;
for(j=n-1;j>=0;j--) {dp=dp*x+p; p=p*x+c[j];}

