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Rational Functions

You evaluate a rationa function like

Du(x) _potpiz+---+pua”
Qu(z) q+qr+- -+ g

R(z) = (5.3.4)

in the obvious way, namely as two separate polynomialsfollowed by adivide. Asa
matter of convention one usually chooses gy = 1, obtained by dividing numerator
and denominator by any other go. It is often convenient to have both sets of
coefficients stored in a single array, and to have a standard function available for
doing the evaluation:

double ratval(double x, double cof[], int mm, int kk)
Given mm, kk, and cof [0..mm+kk], evaluate and return the rational function (cof [0] +

cof[11x+ --- + cof [mm]¥"™)/(1 + cof [mm+1]x + - - - + cof [mm+kk] xkk)
{
int j;
double sumd,sumn; Note precision! Change to float if desired.

for (sumn=cof [mm], j=mm-1;j>=0;j--) sumn=sumn*x+cof [j];
for (sumd=0.0,j=mm+kk;j>=mm+1;j--) sumd=(sumd+cof [j])*x;
return sumn/(1.0+sumd) ;
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5.4 Complex Arithmetic

As we mentioned in §1.2, the lack of built-in complex arithmetic in C is a
nuisance for numerical work. Even in languages like FORTRAN that have complex
data types, it is disconcertingly common to encounter complex operations that
produce overflows or underflows when both the complex operands and the complex
result are perfectly representable. Thisoccurs, wethink, because software companies
assign inexperienced programmers to what they believe to be the perfectly trivia
task of implementing complex arithmetic.
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5.4 Complex Arithmetic 177

Actualy, complex arithmetic is not quite trivial. Addition and subtraction
are done in the obvious way, performing the operation separately on the real and
imaginary parts of the operands. Multiplication can aso be donein the obviousway,
with 4 multiplications, one addition, and one subtraction,

(a+ib)(c+id) = (ac — bd) + i(bc + ad) (5.4.1)

(the addition before the ¢ doesn’t count; it just separates thereal and imaginary parts
notationally). But it is sometimes faster to multiply via

(a4 ib)(c+id) = (ac — bd) + i[(a + b)(c + d) — ac — bd] (5.4.2)

which has only three multiplications(ac, bd, (a + b)(c + d)), plus two additionsand
three subtractions. The total operations count is higher by two, but multiplication
is a dow operation on some machines.

While it is true that intermediate results in equations (5.4.1) and (5.4.2) can
overflow even when thefinal result isrepresentable, this happens only when thefina
answer is on the edge of representability. Not so for the complex modulus, if you
are misguided enough to compute it as

la +ib] = /a2 + b2 (bad!) (5.4.3)

whose intermediate result will overflow if either a or b is as large as the sguare
root of the largest representable number (e.g., 101 as compared to 103%). Theright
way to do the caculation is

o LlIEORE 1ol b
la-+ 2] {|b|\/1+<a/b>2 la] < b (544)

Complex division should use a similar trick to prevent avoidable overflows,
underflow, or loss of precision,

[a+b(d/c)] +i[b—a(d/c)]

atib _ c+d(d/c) =1 (5.4.5)
cvid ) lale/d)+ b +ibe/d —a]
clefd)+d

Of course you should calculate repeated subexpressions, likec/d or d/c, only once.

Complex square root is even more complicated, since we must both guard
intermediate results, and also enforce a chosen branch cut (here taken to be the
negative real axis). To take the sguare root of ¢ + id, first compute

0 C:d:o

JH\/”— R

w =

(5.4.6)

\/m\/|c/d| + \/21 GO

cf <ld|
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178 Chapter 5.  Evaluation of Functions

Then the answer is

0 w =20
d
w—l—i(—) w#0,¢>0
2w
Ve+id = d 547
e u—|—iw w#0,c<0,d>0 ( )
2w
d
u—iw w#0,c<0,d<0
2w

Routines implementing these algorithms are listed in Appendix C.

CITED REFERENCES AND FURTHER READING:
Midy, P., and Yakovlev, Y. 1991, Mathematics and Computers in Simulation, vol. 33, pp. 33-49.

Knuth, D.E. 1981, Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer Programming
(Reading, MA: Addison-Wesley) [see solutions to exercises 4.2.1.16 and 4.6.4.41].

5.5 Recurrence Relations and Clenshaw’s
Recurrence Formula

Many useful functions satisfy recurrence relations, eg.,

(n+ 1)Ppt1(x) = 2n+ DxPy(x) —nPh_1(z) (65.1)
Tsr(z) = %”Jn(x) (@) (55.2)
nEyy1(z) =e % —zE,(x) (653

cosnf = 2cosf cos(n — 1)0 — cos(n — 2)0 (5.5.9)
sinnf = 2 cosfsin(n — 1)0 — sin(n — 2)6 (5.5.5)

wherethefirst threefunctionsare Legendre polynomials, Bessel functionsof thefirst
kind, and exponential integrals, respectively. (For notation see[1].) These relations
are useful for extending computational methods from two successive values of n to
other values, either larger or smaller.

Equations(5.5.4) and (5.5.5) motivate usto say afew words about trigonometric
functions. If your program’s running time is dominated by evaluating trigonometric
functions, you are probably doing something wrong. Trig functionswhose arguments
form alinear sequence 0 = 6y + nd, n = 0,1,2,..., are efficiently caculated by
the following recurrence,

cos(0 4 6) = cos — [acosf + [sin 6]

556
sin(f + ¢) = sinf — [asinf — [ cos 0] ( )

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD
(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad



