
240 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

int j;
float bi,bim,bip,tox,ans;

if (n < 2) nrerror("Index n less than 2 in bessi");
if (x == 0.0)

return 0.0;
else {

tox=2.0/fabs(x);
bip=ans=0.0;
bi=1.0;
for (j=2*(n+(int) sqrt(ACC*n));j>0;j--) { Downward recurrence from even

m.bim=bip+j*tox*bi;
bip=bi;
bi=bim;
if (fabs(bi) > BIGNO) { Renormalize to prevent overflows.

ans *= BIGNI;
bi *= BIGNI;
bip *= BIGNI;

}
if (j == n) ans=bip;

}
ans *= bessi0(x)/bi; Normalize with bessi0.
return x < 0.0 && (n & 1) ? -ans : ans;

}
}

CITED REFERENCES AND FURTHER READING:

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §9.8. [1]

Carrier, G.F., Krook, M. and Pearson, C.E. 1966, Functions of a Complex Variable (New York:
McGraw-Hill), pp. 220ff.

6.7 Bessel Functions of Fractional Order, Airy
Functions, Spherical Bessel Functions

Many algorithms have been proposed for computing Bessel functions of fractional order
numerically. Most of them are, in fact, not very good in practice. The routines given here are
rather complicated, but they can be recommended wholeheartedly.

Ordinary Bessel Functions

The basic idea is Steed’s method, which was originally developed [1] for Coulomb wave
functions. The method calculates Jν , J ′ν , Yν , and Y ′ν simultaneously, and so involves four
relations among these functions. Three of the relations come from two continued fractions,
one of which is complex. The fourth is provided by the Wronskian relation

W ≡ JνY
′
ν − YνJ ′ν =

2

πx
(6.7.1)

The first continued fraction, CF1, is defined by

fν ≡
J ′ν
Jν

=
ν

x
− Jν+1

Jν

=
ν

x
− 1

2(ν + 1)/x −
1

2(ν + 2)/x − · · ·
(6.7.2)

6.7 Bessel Functions of Fractional Order 241

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

You can easily derive it from the three-term recurrence relation for Bessel functions: Start with
equation (6.5.6) and use equation (5.5.18). Forward evaluation of the continued fraction by
one of the methods of §5.2 is essentially equivalent to backward recurrence of the recurrence
relation. The rate of convergence of CF1 is determined by the position of the turning point
xtp =

√
ν(ν + 1) ≈ ν, beyond which the Bessel functions become oscillatory. If x <∼ xtp,

convergence is very rapid. If x >∼ xtp, then each iteration of the continued fraction effectively
increases ν by one until x <∼ xtp; thereafter rapid convergence sets in. Thus the number
of iterations of CF1 is of order x for large x. In the routine bessjy we set the maximum
allowed number of iterations to 10,000. For larger x, you can use the usual asymptotic
expressions for Bessel functions.

One can show that the sign of Jν is the same as the sign of the denominator of CF1
once it has converged.

The complex continued fraction CF2 is defined by

p+ iq ≡ J ′ν + iY ′ν
Jν + iYν

= − 1

2x
+ i+

i

x

(1/2)2 − ν2

2(x + i) +

(3/2)2 − ν2

2(x+ 2i) +
· · · (6.7.3)

(We sketch the derivation of CF2 in the analogous case of modified Bessel functions in the
next subsection.) This continued fraction converges rapidly for x >∼ xtp, while convergence
fails as x→ 0. We have to adopt a special method for small x, which we describe below. For
x not too small, we can ensure that x >∼ xtp by a stable recurrence of Jν and J ′ν downwards
to a value ν = µ <∼ x, thus yielding the ratio fµ at this lower value of ν. This is the stable
direction for the recurrence relation. The initial values for the recurrence are

Jν = arbitrary, J ′ν = fνJν , (6.7.4)

with the sign of the arbitrary initial value of Jν chosen to be the sign of the denominator of
CF1. Choosing the initial value of Jν very small minimizes the possibility of overflow during
the recurrence. The recurrence relations are

Jν−1 =
ν

x
Jν + J ′ν

J ′ν−1 =
ν − 1

x
Jν−1 − Jν

(6.7.5)

Once CF2 has been evaluated at ν = µ, then with the Wronskian (6.7.1) we have enough
relations to solve for all four quantities. The formulas are simplified by introducing the quantity

γ ≡ p− fµ
q

(6.7.6)

Then

Jµ = ±
(

W

q + γ(p− fµ)

)1/2

(6.7.7)

J ′µ = fµJµ (6.7.8)

Yµ = γJµ (6.7.9)

Y ′µ = Yµ

(
p+

q

γ

)
(6.7.10)

The sign of Jµ in (6.7.7) is chosen to be the same as the sign of the initial Jν in (6.7.4).
Once all four functions have been determined at the value ν = µ, we can find them at the

original value of ν. For Jν and J ′ν , simply scale the values in (6.7.4) by the ratio of (6.7.7) to
the value found after applying the recurrence (6.7.5). The quantities Yν and Y ′ν can be found
by starting with the values in (6.7.9) and (6.7.10) and using the stable upwards recurrence

Yν+1 =
2ν

x
Yν − Yν−1 (6.7.11)

together with the relation

Y ′ν =
ν

x
Yν − Yν+1 (6.7.12)

242 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Now turn to the case of small x, when CF2 is not suitable. Temme [2] has given a
good method of evaluating Yν and Yν+1, and hence Y ′ν from (6.7.12), by series expansions
that accurately handle the singularity as x → 0. The expansions work only for |ν| ≤ 1/2,
and so now the recurrence (6.7.5) is used to evaluate fν at a value ν = µ in this interval.
Then one calculates Jµ from

Jµ =
W

Y ′µ − Yµfµ
(6.7.13)

and J ′µ from (6.7.8). The values at the original value of ν are determined by scaling as before,
and the Y ’s are recurred up as before.

Temme’s series are

Yν = −
∞∑
k=0

ckgk Yν+1 = − 2

x

∞∑
k=0

ckhk (6.7.14)

Here

ck =
(−x2/4)k

k!
(6.7.15)

while the coefficients gk and hk are defined in terms of quantities pk , qk, and fk that can
be found by recursion:

gk = fk +
2

ν
sin2

(νπ
2

)
qk

hk = −kgk + pk

pk =
pk−1

k − ν
qk =

qk−1

k + ν

fk =
kfk−1 + pk−1 + qk−1

k2 − ν2

(6.7.16)

The initial values for the recurrences are

p0 =
1

π

(x
2

)−ν
Γ(1 + ν)

q0 =
1

π

(x
2

)ν
Γ(1− ν)

f0 =
2

π

νπ

sinνπ

[
coshσΓ1(ν) +

sinhσ

σ
ln

(
2

x

)
Γ2(ν)

] (6.7.17)

with

σ = ν ln

(
2

x

)
Γ1(ν) =

1

2ν

[
1

Γ(1− ν)
− 1

Γ(1 + ν)

]
Γ2(ν) =

1

2

[
1

Γ(1− ν)
+

1

Γ(1 + ν)

] (6.7.18)

The whole point of writing the formulas in this way is that the potential problems as ν → 0
can be controlled by evaluating νπ/ sin νπ, sinhσ/σ, and Γ1 carefully. In particular, Temme
gives Chebyshev expansions for Γ1(ν) and Γ2(ν). We have rearranged his expansion for Γ1

to be explicitly an even series in ν so that we can use our routine chebev as explained in §5.8.
The routine assumes ν ≥ 0. For negative ν you can use the reflection formulas

J−ν = cos νπ Jν − sinνπ Yν

Y−ν = sin νπ Jν + cos νπ Yν
(6.7.19)

The routine also assumes x > 0. For x < 0 the functions are in general complex, but
expressible in terms of functions with x > 0. For x = 0, Yν is singular.

6.7 Bessel Functions of Fractional Order 243

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Internal arithmetic in the routine is carried out in double precision. The complex
arithmetic is carried out explicitly with real variables.

#include <math.h>
#include "nrutil.h"
#define EPS 1.0e-10
#define FPMIN 1.0e-30
#define MAXIT 10000
#define XMIN 2.0
#define PI 3.141592653589793

void bessjy(float x, float xnu, float *rj, float *ry, float *rjp, float *ryp)
Returns the Bessel functions rj = Jν , ry = Yν and their derivatives rjp = J ′ν , ryp = Y ′ν , for
positive x and for xnu = ν ≥ 0. The relative accuracy is within one or two significant digits
of EPS, except near a zero of one of the functions, where EPS controls its absolute accuracy.
FPMIN is a number close to the machine’s smallest floating-point number. All internal arithmetic
is in double precision. To convert the entire routine to double precision, change the float
declarations above to double and decrease EPS to 10−16. Also convert the function beschb.
{

void beschb(double x, double *gam1, double *gam2, double *gampl,
double *gammi);

int i,isign,l,nl;
double a,b,br,bi,c,cr,ci,d,del,del1,den,di,dlr,dli,dr,e,f,fact,fact2,

fact3,ff,gam,gam1,gam2,gammi,gampl,h,p,pimu,pimu2,q,r,rjl,
rjl1,rjmu,rjp1,rjpl,rjtemp,ry1,rymu,rymup,rytemp,sum,sum1,
temp,w,x2,xi,xi2,xmu,xmu2;

if (x <= 0.0 || xnu < 0.0) nrerror("bad arguments in bessjy");
nl=(x < XMIN ? (int)(xnu+0.5) : IMAX(0,(int)(xnu-x+1.5)));
nl is the number of downward recurrences of the J’s and upward recurrences of Y ’s. xmu
lies between −1/2 and 1/2 for x < XMIN, while it is chosen so that x is greater than the
turning point for x ≥ XMIN.
xmu=xnu-nl;
xmu2=xmu*xmu;
xi=1.0/x;
xi2=2.0*xi;
w=xi2/PI; The Wronskian.
isign=1; Evaluate CF1 by modified Lentz’s method (§5.2).

isign keeps track of sign changes in the de-
nominator.

h=xnu*xi;
if (h < FPMIN) h=FPMIN;
b=xi2*xnu;
d=0.0;
c=h;
for (i=1;i<=MAXIT;i++) {

b += xi2;
d=b-d;
if (fabs(d) < FPMIN) d=FPMIN;
c=b-1.0/c;
if (fabs(c) < FPMIN) c=FPMIN;
d=1.0/d;
del=c*d;
h=del*h;
if (d < 0.0) isign = -isign;
if (fabs(del-1.0) < EPS) break;

}
if (i > MAXIT) nrerror("x too large in bessjy; try asymptotic expansion");
rjl=isign*FPMIN; Initialize Jν and J ′ν for downward recurrence.
rjpl=h*rjl;
rjl1=rjl; Store values for later rescaling.
rjp1=rjpl;
fact=xnu*xi;
for (l=nl;l>=1;l--) {

rjtemp=fact*rjl+rjpl;
fact -= xi;

244 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

rjpl=fact*rjtemp-rjl;
rjl=rjtemp;

}
if (rjl == 0.0) rjl=EPS;
f=rjpl/rjl; Now have unnormalized Jµ and J ′µ.
if (x < XMIN) { Use series.

x2=0.5*x;
pimu=PI*xmu;
fact = (fabs(pimu) < EPS ? 1.0 : pimu/sin(pimu));
d = -log(x2);
e=xmu*d;
fact2 = (fabs(e) < EPS ? 1.0 : sinh(e)/e);
beschb(xmu,&gam1,&gam2,&gampl,&gammi); Chebyshev evaluation of Γ1 and Γ2.
ff=2.0/PI*fact*(gam1*cosh(e)+gam2*fact2*d); f0.
e=exp(e);
p=e/(gampl*PI); p0.
q=1.0/(e*PI*gammi); q0.
pimu2=0.5*pimu;
fact3 = (fabs(pimu2) < EPS ? 1.0 : sin(pimu2)/pimu2);
r=PI*pimu2*fact3*fact3;
c=1.0;
d = -x2*x2;
sum=ff+r*q;
sum1=p;
for (i=1;i<=MAXIT;i++) {

ff=(i*ff+p+q)/(i*i-xmu2);
c *= (d/i);
p /= (i-xmu);
q /= (i+xmu);
del=c*(ff+r*q);
sum += del;
del1=c*p-i*del;
sum1 += del1;
if (fabs(del) < (1.0+fabs(sum))*EPS) break;

}
if (i > MAXIT) nrerror("bessy series failed to converge");
rymu = -sum;
ry1 = -sum1*xi2;
rymup=xmu*xi*rymu-ry1;
rjmu=w/(rymup-f*rymu); Equation (6.7.13).

} else { Evaluate CF2 by modified Lentz’s method (§5.2).
a=0.25-xmu2;
p = -0.5*xi;
q=1.0;
br=2.0*x;
bi=2.0;
fact=a*xi/(p*p+q*q);
cr=br+q*fact;
ci=bi+p*fact;
den=br*br+bi*bi;
dr=br/den;
di = -bi/den;
dlr=cr*dr-ci*di;
dli=cr*di+ci*dr;
temp=p*dlr-q*dli;
q=p*dli+q*dlr;
p=temp;
for (i=2;i<=MAXIT;i++) {

a += 2*(i-1);
bi += 2.0;
dr=a*dr+br;
di=a*di+bi;
if (fabs(dr)+fabs(di) < FPMIN) dr=FPMIN;
fact=a/(cr*cr+ci*ci);

6.7 Bessel Functions of Fractional Order 245

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

cr=br+cr*fact;
ci=bi-ci*fact;
if (fabs(cr)+fabs(ci) < FPMIN) cr=FPMIN;
den=dr*dr+di*di;
dr /= den;
di /= -den;
dlr=cr*dr-ci*di;
dli=cr*di+ci*dr;
temp=p*dlr-q*dli;
q=p*dli+q*dlr;
p=temp;
if (fabs(dlr-1.0)+fabs(dli) < EPS) break;

}
if (i > MAXIT) nrerror("cf2 failed in bessjy");
gam=(p-f)/q; Equations (6.7.6) – (6.7.10).
rjmu=sqrt(w/((p-f)*gam+q));
rjmu=SIGN(rjmu,rjl);
rymu=rjmu*gam;
rymup=rymu*(p+q/gam);
ry1=xmu*xi*rymu-rymup;

}
fact=rjmu/rjl;
*rj=rjl1*fact; Scale original Jν and J′ν .
*rjp=rjp1*fact;
for (i=1;i<=nl;i++) { Upward recurrence of Yν .

rytemp=(xmu+i)*xi2*ry1-rymu;
rymu=ry1;
ry1=rytemp;

}
*ry=rymu;
*ryp=xnu*xi*rymu-ry1;

}

#define NUSE1 5
#define NUSE2 5

void beschb(double x, double *gam1, double *gam2, double *gampl, double *gammi)
Evaluates Γ1 and Γ2 by Chebyshev expansion for |x| ≤ 1/2. Also returns 1/Γ(1 + x) and
1/Γ(1− x). If converting to double precision, set NUSE1 = 7, NUSE2 = 8.
{

float chebev(float a, float b, float c[], int m, float x);
float xx;
static float c1[] = {

-1.142022680371168e0,6.5165112670737e-3,
3.087090173086e-4,-3.4706269649e-6,6.9437664e-9,
3.67795e-11,-1.356e-13};

static float c2[] = {
1.843740587300905e0,-7.68528408447867e-2,
1.2719271366546e-3,-4.9717367042e-6,-3.31261198e-8,
2.423096e-10,-1.702e-13,-1.49e-15};

xx=8.0*x*x-1.0; Multiply x by 2 to make range be −1 to 1,
and then apply transformation for eval-
uating even Chebyshev series.

*gam1=chebev(-1.0,1.0,c1,NUSE1,xx);
*gam2=chebev(-1.0,1.0,c2,NUSE2,xx);
*gampl= *gam2-x*(*gam1);
*gammi= *gam2+x*(*gam1);

}

246 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Modified Bessel Functions

Steed’s method does not work for modified Bessel functions because in this case CF2 is
purely imaginary and we have only three relations among the four functions. Temme [3] has
given a normalization condition that provides the fourth relation.

The Wronskian relation is

W ≡ IνK ′ν −KνI
′
ν = − 1

x
(6.7.20)

The continued fraction CF1 becomes

fν ≡
I ′ν
Iν

=
ν

x
+

1

2(ν + 1)/x +

1

2(ν + 2)/x +
· · · (6.7.21)

To get CF2 and the normalization condition in a convenient form, consider the sequence
of confluent hypergeometric functions

zn(x) = U(ν + 1/2 + n, 2ν + 1, 2x) (6.7.22)

for fixed ν. Then

Kν(x) = π1/2(2x)νe−xz0(x) (6.7.23)

Kν+1(x)

Kν(x)
=

1

x

[
ν +

1

2
+ x+

(
ν2 − 1

4

)
z1

z0

]
(6.7.24)

Equation (6.7.23) is the standard expression for Kν in terms of a confluent hypergeometric
function, while equation (6.7.24) follows from relations between contiguous confluent hy-
pergeometric functions (equations 13.4.16 and 13.4.18 in Abramowitz and Stegun). Now
the functions zn satisfy the three-term recurrence relation (equation 13.4.15 in Abramowitz
and Stegun)

zn−1(x) = bnzn(x) + an+1zn+1 (6.7.25)
with

bn = 2(n+ x)

an+1 = −[(n+ 1/2)2 − ν2]
(6.7.26)

Following the steps leading to equation (5.5.18), we get the continued fraction CF2

z1

z0
=

1

b1 +

a2

b2 +
· · · (6.7.27)

from which (6.7.24) gives Kν+1/Kν and thus K ′ν/Kν .
Temme’s normalization condition is that

∞∑
n=0

Cnzn =

(
1

2x

)ν+1/2

(6.7.28)

where

Cn =
(−1)n

n!

Γ(ν + 1/2 + n)

Γ(ν + 1/2− n)
(6.7.29)

Note that the Cn’s can be determined by recursion:

C0 = 1, Cn+1 = − an+1

n+ 1
Cn (6.7.30)

We use the condition (6.7.28) by finding

S =
∞∑
n=1

Cn
zn
z0

(6.7.31)

Then

z0 =

(
1

2x

)ν+1/2
1

1 + S
(6.7.32)

6.7 Bessel Functions of Fractional Order 247

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

and (6.7.23) gives Kν .
Thompson and Barnett [4] have given a clever method of doing the sum (6.7.31)

simultaneously with the forward evaluation of the continued fraction CF2. Suppose the
continued fraction is being evaluated as

z1

z0
=

∞∑
n=0

∆hn (6.7.33)

where the increments ∆hn are being found by, e.g., Steed’s algorithm or the modified Lentz’s
algorithm of §5.2. Then the approximation to S keeping the first N terms can be found as

SN =

N∑
n=1

Qn∆hn (6.7.34)

Here

Qn =
n∑
k=1

Ckqk (6.7.35)

and qk is found by recursion from

qk+1 = (qk−1 − bkqk)/ak+1 (6.7.36)

starting with q0 = 0, q1 = 1. For the case at hand, approximately three times as many terms
are needed to get S to converge as are needed simply for CF2 to converge.

To find Kν and Kν+1 for small x we use series analogous to (6.7.14):

Kν =

∞∑
k=0

ckfk Kν+1 =
2

x

∞∑
k=0

ckhk (6.7.37)

Here

ck =
(x2/4)k

k!
hk = −kfk + pk

pk =
pk−1

k − ν
qk =

qk−1

k + ν

fk =
kfk−1 + pk−1 + qk−1

k2 − ν2

(6.7.38)

The initial values for the recurrences are

p0 =
1

2

(x
2

)−ν
Γ(1 + ν)

q0 =
1

2

(x
2

)ν
Γ(1− ν)

f0 =
νπ

sin νπ

[
coshσΓ1(ν) +

sinh σ

σ
ln

(
2

x

)
Γ2(ν)

] (6.7.39)

Both the series for small x, and CF2 and the normalization relation (6.7.28) require
|ν| ≤ 1/2. In both cases, therefore, we recurse Iν down to a value ν = µ in this interval, find
Kµ there, and recurse Kν back up to the original value of ν.

The routine assumes ν ≥ 0. For negative ν use the reflection formulas

I−ν = Iν +
2

π
sin(νπ)Kν

K−ν = Kν

(6.7.40)

Note that for large x, Iν ∼ ex, Kν ∼ e−x, and so these functions will overflow or
underflow. It is often desirable to be able to compute the scaled quantities e−xIν and exKν.
Simply omitting the factor e−x in equation (6.7.23) will ensure that all four quantities will
have the appropriate scaling. If you also want to scale the four quantities for small x when
the series in equation (6.7.37) are used, you must multiply each series by ex.

248 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

#include <math.h>
#define EPS 1.0e-10
#define FPMIN 1.0e-30
#define MAXIT 10000
#define XMIN 2.0
#define PI 3.141592653589793

void bessik(float x, float xnu, float *ri, float *rk, float *rip, float *rkp)
Returns the modified Bessel functions ri = Iν , rk = Kν and their derivatives rip = I′ν ,
rkp = K′ν , for positive x and for xnu = ν ≥ 0. The relative accuracy is within one or two
significant digits of EPS. FPMIN is a number close to the machine’s smallest floating-point
number. All internal arithmetic is in double precision. To convert the entire routine to double
precision, change the float declarations above to double and decrease EPS to 10−16. Also
convert the function beschb.
{

void beschb(double x, double *gam1, double *gam2, double *gampl,
double *gammi);

void nrerror(char error_text[]);
int i,l,nl;
double a,a1,b,c,d,del,del1,delh,dels,e,f,fact,fact2,ff,gam1,gam2,

gammi,gampl,h,p,pimu,q,q1,q2,qnew,ril,ril1,rimu,rip1,ripl,
ritemp,rk1,rkmu,rkmup,rktemp,s,sum,sum1,x2,xi,xi2,xmu,xmu2;

if (x <= 0.0 || xnu < 0.0) nrerror("bad arguments in bessik");
nl=(int)(xnu+0.5); nl is the number of downward re-

currences of the I’s and upward
recurrences of K’s. xmu lies be-
tween −1/2 and 1/2.

xmu=xnu-nl;
xmu2=xmu*xmu;
xi=1.0/x;
xi2=2.0*xi;
h=xnu*xi; Evaluate CF1 by modified Lentz’s

method (§5.2).if (h < FPMIN) h=FPMIN;
b=xi2*xnu;
d=0.0;
c=h;
for (i=1;i<=MAXIT;i++) {

b += xi2;
d=1.0/(b+d); Denominators cannot be zero here,

so no need for special precau-
tions.

c=b+1.0/c;
del=c*d;
h=del*h;
if (fabs(del-1.0) < EPS) break;

}
if (i > MAXIT) nrerror("x too large in bessik; try asymptotic expansion");
ril=FPMIN; Initialize Iν and I′ν for downward re-

currence.ripl=h*ril;
ril1=ril; Store values for later rescaling.
rip1=ripl;
fact=xnu*xi;
for (l=nl;l>=1;l--) {

ritemp=fact*ril+ripl;
fact -= xi;
ripl=fact*ritemp+ril;
ril=ritemp;

}
f=ripl/ril; Now have unnormalized Iµ and I′µ.
if (x < XMIN) { Use series.

x2=0.5*x;
pimu=PI*xmu;
fact = (fabs(pimu) < EPS ? 1.0 : pimu/sin(pimu));
d = -log(x2);
e=xmu*d;
fact2 = (fabs(e) < EPS ? 1.0 : sinh(e)/e);
beschb(xmu,&gam1,&gam2,&gampl,&gammi); Chebyshev evaluation of Γ1 and Γ2.
ff=fact*(gam1*cosh(e)+gam2*fact2*d); f0.

6.7 Bessel Functions of Fractional Order 249

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

sum=ff;
e=exp(e);
p=0.5*e/gampl; p0.
q=0.5/(e*gammi); q0.
c=1.0;
d=x2*x2;
sum1=p;
for (i=1;i<=MAXIT;i++) {

ff=(i*ff+p+q)/(i*i-xmu2);
c *= (d/i);
p /= (i-xmu);
q /= (i+xmu);
del=c*ff;
sum += del;
del1=c*(p-i*ff);
sum1 += del1;
if (fabs(del) < fabs(sum)*EPS) break;

}
if (i > MAXIT) nrerror("bessk series failed to converge");
rkmu=sum;
rk1=sum1*xi2;

} else { Evaluate CF2 by Steed’s algorithm
(§5.2), which is OK because there
can be no zero denominators.

b=2.0*(1.0+x);
d=1.0/b;
h=delh=d;
q1=0.0; Initializations for recurrence (6.7.35).
q2=1.0;
a1=0.25-xmu2;
q=c=a1; First term in equation (6.7.34).
a = -a1;
s=1.0+q*delh;
for (i=2;i<=MAXIT;i++) {

a -= 2*(i-1);
c = -a*c/i;
qnew=(q1-b*q2)/a;
q1=q2;
q2=qnew;
q += c*qnew;
b += 2.0;
d=1.0/(b+a*d);
delh=(b*d-1.0)*delh;
h += delh;
dels=q*delh;
s += dels;
if (fabs(dels/s) < EPS) break;
Need only test convergence of sum since CF2 itself converges more quickly.

}
if (i > MAXIT) nrerror("bessik: failure to converge in cf2");
h=a1*h;
rkmu=sqrt(PI/(2.0*x))*exp(-x)/s; Omit the factor exp(−x) to scale

all the returned functions by exp(x)
for x ≥ XMIN.

rk1=rkmu*(xmu+x+0.5-h)*xi;
}
rkmup=xmu*xi*rkmu-rk1;
rimu=xi/(f*rkmu-rkmup); Get Iµ from Wronskian.
*ri=(rimu*ril1)/ril; Scale original Iν and I ′ν .
*rip=(rimu*rip1)/ril;
for (i=1;i<=nl;i++) { Upward recurrence of Kν .

rktemp=(xmu+i)*xi2*rk1+rkmu;
rkmu=rk1;
rk1=rktemp;

}
*rk=rkmu;
*rkp=xnu*xi*rkmu-rk1;

}

250 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Airy Functions

For positive x, the Airy functions are defined by

Ai(x) =
1

π

√
x

3
K1/3(z) (6.7.41)

Bi(x) =

√
x

3
[I1/3(z) + I−1/3(z)] (6.7.42)

where

z =
2

3
x3/2 (6.7.43)

By using the reflection formula (6.7.40), we can convert (6.7.42) into the computationally
more useful form

Bi(x) =
√
x

[
2√
3
I1/3(z) +

1

π
K1/3(z)

]
(6.7.44)

so that Ai and Bi can be evaluated with a single call to bessik.
The derivatives should not be evaluated by simply differentiating the above expressions

because of possible subtraction errors near x = 0. Instead, use the equivalent expressions

Ai′(x) = − x

π
√

3
K2/3(z)

Bi′(x) = x

[
2√
3
I2/3(z) +

1

π
K2/3(z)

] (6.7.45)

The corresponding formulas for negative arguments are

Ai(−x) =

√
x

2

[
J1/3(z)− 1√

3
Y1/3(z)

]
Bi(−x) = −

√
x

2

[
1√
3
J1/3(z) + Y1/3(z)

]
Ai′(−x) =

x

2

[
J2/3(z) +

1√
3
Y2/3(z)

]
Bi′(−x) =

x

2

[
1√
3
J2/3(z)− Y2/3(z)

]
(6.7.46)

#include <math.h>
#define PI 3.1415927
#define THIRD (1.0/3.0)
#define TWOTHR (2.0*THIRD)
#define ONOVRT 0.57735027

void airy(float x, float *ai, float *bi, float *aip, float *bip)
Returns Airy functions Ai(x), Bi(x), and their derivatives Ai′(x), Bi′(x).
{

void bessik(float x, float xnu, float *ri, float *rk, float *rip,
float *rkp);

void bessjy(float x, float xnu, float *rj, float *ry, float *rjp,
float *ryp);

float absx,ri,rip,rj,rjp,rk,rkp,rootx,ry,ryp,z;

absx=fabs(x);
rootx=sqrt(absx);
z=TWOTHR*absx*rootx;
if (x > 0.0) {

bessik(z,THIRD,&ri,&rk,&rip,&rkp);
*ai=rootx*ONOVRT*rk/PI;

6.7 Bessel Functions of Fractional Order 251

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

bi=rootx(rk/PI+2.0*ONOVRT*ri);
bessik(z,TWOTHR,&ri,&rk,&rip,&rkp);
*aip = -x*ONOVRT*rk/PI;
bip=x(rk/PI+2.0*ONOVRT*ri);

} else if (x < 0.0) {
bessjy(z,THIRD,&rj,&ry,&rjp,&ryp);
*ai=0.5*rootx*(rj-ONOVRT*ry);
*bi = -0.5*rootx*(ry+ONOVRT*rj);
bessjy(z,TWOTHR,&rj,&ry,&rjp,&ryp);
*aip=0.5*absx*(ONOVRT*ry+rj);
*bip=0.5*absx*(ONOVRT*rj-ry);

} else { Case x = 0.
*ai=0.35502805;
*bi=(*ai)/ONOVRT;
*aip = -0.25881940;
*bip = -(*aip)/ONOVRT;

}
}

Spherical Bessel Functions

For integer n, spherical Bessel functions are defined by

jn(x) =

√
π

2x
Jn+(1/2)(x)

yn(x) =

√
π

2x
Yn+(1/2)(x)

(6.7.47)

They can be evaluated by a call to bessjy, and the derivatives can safely be found from
the derivatives of equation (6.7.47).

Note that in the continued fraction CF2 in (6.7.3) just the first term survives forν = 1/2.
Thus one can make a very simple algorithm for spherical Bessel functions along the lines of
bessjy by always recursing jn down to n = 0, setting p and q from the first term in CF2, and
then recursing yn up. No special series is required near x = 0. However, bessjy is already
so efficient that we have not bothered to provide an independent routine for spherical Bessels.

#include <math.h>
#define RTPIO2 1.2533141

void sphbes(int n, float x, float *sj, float *sy, float *sjp, float *syp)
Returns spherical Bessel functions jn(x), yn(x), and their derivatives j′n(x), y′n(x) for integer n.
{

void bessjy(float x, float xnu, float *rj, float *ry, float *rjp,
float *ryp);

void nrerror(char error_text[]);
float factor,order,rj,rjp,ry,ryp;

if (n < 0 || x <= 0.0) nrerror("bad arguments in sphbes");
order=n+0.5;
bessjy(x,order,&rj,&ry,&rjp,&ryp);
factor=RTPIO2/sqrt(x);
*sj=factor*rj;
*sy=factor*ry;
*sjp=factor*rjp-(*sj)/(2.0*x);
*syp=factor*ryp-(*sy)/(2.0*x);

}

252 Chapter 6. Special Functions

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

CITED REFERENCES AND FURTHER READING:

Barnett, A.R., Feng, D.H., Steed, J.W., and Goldfarb, L.J.B. 1974, Computer Physics Commu-
nications, vol. 8, pp. 377–395. [1]

Temme, N.M. 1976, Journal of Computational Physics, vol. 21, pp. 343–350 [2]; 1975, op. cit.,
vol. 19, pp. 324–337. [3]

Thompson, I.J., and Barnett, A.R. 1987, Computer Physics Communications, vol. 47, pp. 245–
257. [4]

Barnett, A.R. 1981, Computer Physics Communications, vol. 21, pp. 297–314.

Thompson, I.J., and Barnett, A.R. 1986, Journal of Computational Physics, vol. 64, pp. 490–509.

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), Chapter 10.

6.8 Spherical Harmonics

Spherical harmonics occur in a large variety of physical problems, for ex-
ample, whenever a wave equation, or Laplace’s equation, is solved by separa-
tion of variables in spherical coordinates. The spherical harmonic Ylm(θ, φ),
−l ≤ m ≤ l, is a function of the two coordinates θ, φ on the surface of a sphere.

The spherical harmonics are orthogonal for different l and m, and they are
normalized so that their integrated square over the sphere is unity:

∫ 2π

0

dφ

∫ 1

−1

d(cos θ)Yl′m′*(θ, φ)Ylm(θ, φ) = δl′ lδm′m (6.8.1)

Here asterisk denotes complex conjugation.
Mathematically, the spherical harmonics are related to associated Legendre

polynomials by the equation

Ylm(θ, φ) =

√
2l+ 1

4π

(l−m)!

(l+ m)!
Pml (cos θ)eimφ (6.8.2)

By using the relation

Yl,−m(θ, φ) = (−1)mYlm*(θ, φ) (6.8.3)

we can always relate a spherical harmonic to an associated Legendre polynomial
with m ≥ 0. With x ≡ cos θ, these are defined in terms of the ordinary Legendre
polynomials (cf. §4.5 and §5.5) by

Pml (x) = (−1)m(1− x2)m/2
dm

dxm
Pl(x) (6.8.4)

