7.7 Quasi- (that is, Sub-) Random Sequences 309

CITED REFERENCES AND FURTHER READING:

Hammersley, J.M., and Handscomb, D.C. 1964, Monte Carlo Methods (London: Methuen).
Shreider, Yu. A. (ed.) 1966, The Monte Carlo Method (Oxford: Pergamon).

Sobol’, I.M. 1974, The Monte Carlo Method (Chicago: University of Chicago Press).
Kalos, M.H., and Whitlock, P.A. 1986, Monte Carlo Methods (New York: Wiley).

7.7 Quasi- (that is, Sub-) Random Sequences

We have just seen that choosing N points uniformly randomly in an n-
dimensional space leads to an error term in Monte Carlo integration that decreases
as1/v/N. Inessence, each new point sampled adds linearly to an accumulated sum
that will become the function average, and aso linearly to an accumulated sum of
squares that will become the variance (equation 7.6.2). The estimated error comes
from the square root of this variance, hence the power N ~1/2,

Just because this square root convergence is familiar does not, however, mean
that it isinevitable. A simple counterexample is to choose sample points that lie
on a Cartesian grid, and to sample each grid point exactly once (in whatever order).
The Monte Carlo method thus becomes a deterministic quadrature scheme — albeit
asimple one — whose fractional error decreases at least asfast as N ! (even faster
if the function goes to zero smoothly at the boundaries of the sampled region, or
is periodic in the region).

The trouble with a grid is that one has to decide in advance how fine it should
be. Oneisthen committed to completing all of its sample points. With agrid, itis
not convenient to “sample until” some convergence or termination criterion is met.
One might ask if there is not some intermediate scheme, some way to pick sample
points “at random,” yet spread out in some self-avoiding way, avoiding the chance
clustering that occurs with uniformly random points.

A similar question arisesfor tasks other than Monte Carlo integration. We might
want to search an n-dimensional space for a point where some (locally computable)
condition holds. Of course, for the task to be computationally meaningful, there
had better be continuity, so that the desired condition will hold in some finite 7-
dimensiona neighborhood. We may not know a priori how large that neighborhood
is, however. Wewant to “sample until” the desired point is found, moving smoothly
to finer scales with increasing samples. |s there any way to do this that is better
than uncorrelated, random samples?

The answer to the above question is “yes.” Sequences of n-tuples that fill
n-space more uniformly than uncorrelated random points are called quasi-random
sequences. That term is somewhat of a misnomer, since there is nothing “random”
about quasi-random sequences. They are cleverly crafted to be, in fact, sub-random.
The sample pointsin a quasi-random segquence are, in a precise sense, “maximally
avoiding” of each other.

A conceptually simple example is Halton's sequence [1]. In one dimension, the
jth number H; in the sequence is obtained by the following steps: (i) Write j as a
number in base b, where b is some prime. (For example j = 17 inbase b = 3 is
122)) (ii) Reverse the digits and put a radix point (i.e., a decimal point base b) in

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
‘alemyos sadipay [eauswnN Aq Z66T-886T (D) WbLAdoD swelbold ‘ssald Ausianiun abpuqwe) Ag z66T-886T (D) WbuUAdoD
(G-80TEY-TZS-0 NESI) ONILNAINOD DIHILNIIOS 40 L8V IHL D NI S3dID3Y TVOIYIWNN woly dbed sjdwes

‘(ealIBWY YLION 8pISINO) 3N oe wed dnd@ape] 0} |lewa puas Jo ‘(Ajuo eauswy YUON) £2/-2/8-008-T |82 JO WO 1u MMM//:dny 81ISgam ISIA
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad



310 Chapter 7. Random Numbers

l -l |. 1] | T™TT | |.| T | T -l. T |J l -l.ll: .l |.i T | L.Il T hl-llll |l.| T |.'!
- Cor e SRR A
8+ . . A 8—"__.' . ,_":._"--' ™
: . ] L] -. . . . L] . .: :l. ... .... .-. -- .. .: : . .. .. a " l.;
6 . " . " . " " 2 6 -.:.'. : R l.:' ... : .-- L
4 -_'. -t " o ) ' '_- 4 ::. ) .'- ..'l: .=- - .. . .... l:..-.l:
2 * . . . n . .. .' . . _: 2 1-“ '. .. . l...-: . ..- " "..- . --_.._._
i ] -. - . -- .: C -._.._' . .. . -... ...: -- " -"E
O-n 1 |.I L |.I'.| L BN RTRTL I B W 0_.;| |.|l1.|.l|-F.| | |.|.||I.l|'1-.|l-
0 2 4 .6 .8 1 0 2 4 .6 .8 1
points 1 to 128 points 129 to 512
1 % |..| 1-..-| T .IIIL T T |.-|. T .l-.-|..| ] 1 ..r ot} .|. T .L..I LM A R ]
8 __..- .-'.... .'.-::. .l -.“. " -... ......' M 8
o, mER ¥ LA
R R L 4
2 -:. - L .-. '.- o .l.'.. -~ -.l-. .-..- ., .-.:- 2
0 i . :l.ﬂ .|:-l |. | : .-|. |'.|.' .T .| |.'1. |. .| |'i 0 -:i 'lF.'.nl -lh-'n:'n.'-.- f.--n '.n.-':-l: .1 .:' n.lJ'=.|. 'n.n"'
0 2 4 .6 .8 1 0 2 4 .6 .8 1
points 513 to 1024 points 1 to 1024

Figure 7.7.1.  First 1024 points of a two-dimensional Sobol’ sequence. The sequence is generated
number-theoretically, rather than randomly, so successive points at any stage “know” how to fill in the
gaps in the previously generated distribution.

front of the sequence. (In the example, we get 0.221 base 3.) The resultis H;. To
get a sequence of n-tuplesin n-space, you make each component a Halton sequence
with a different prime base b. Typically, the first n primes are used.

It isnot hard to see how Halton's sequence works: Every time the number of
digitsin j increases by one place, j's digit-reversed fraction becomes a factor of
b finer-meshed. Thus the process is one of filling in all the points on a sequence
of finer and finer Cartesian grids — and in a kind of maximally spread-out order
on each grid (since, e.g., the most rapidly changing digit in j controls the most
significant digit of the fraction).

Other ways of generating quasi-random sequences have been suggested by
Faure, Sobol’, Niederreiter, and others. Bratley and Fox [2] provide a good review
and references, and discuss a particularly efficient variant of the Sobol’ [3] sequence
suggested by Antonov and Saleev [4]. It is this Antonov-Saleev variant whose
implementation we now discuss.
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7.7 Quasi- (that is, Sub-) Random Sequences 311

Degree Primitive Polynomials Modulo 2*

1 |0 (e z+1)

2 |1 (e, 22 +z+1)

3 1,2 (.e, m3+m+1andm3+m2+1)

4 l,4(i.e.,m4+m+1andm4+m3+1)

5 2, 4,7 11, 13, 14

6 1, 13, 16, 19, 22, 25

7 1,4,7,8, 14, 19, 21, 28, 31, 32, 37, 41, 42, 50, 55, 56, 59, 62

8 14, 21, 22, 38, 47, 49, 50, 52, 56, 67, 70, 84, 97, 103, 115, 122

9 8, 13, 16, 22, 25, 44, 47, 52, 55, 59, 62, 67, 74, 81, 82, 87, 91, 94, 103, 104, 109, 122,
124,137, 138, 143, 145, 152, 157, 167, 173, 176, 181, 182, 185, 191, 194, 199, 218, 220,
227, 229, 230, 234, 236, 241, 244, 253

10 4,13, 19, 22, 50, 55, 64, 69, 98, 107, 115, 121, 127, 134, 140, 145, 152, 158, 161, 171,
181, 194, 199, 203, 208, 227, 242, 251, 253, 265, 266, 274, 283, 289, 295, 301, 316,
319, 324, 346, 352, 361, 367, 382, 395, 398, 400, 412, 419, 422, 426, 428, 433, 446,
454, 457, 472, 493, 505, 508

*Expressed as a decimal integer representing the interior bits (that is, omitting the
high-order bit and the unit bit).

The Sobol’ sequencegeneratesnumbersbetween zero and onedirectly asbinary fractions
of length w bits, from a set of w special binary fractions, V;, i = 1,2, ..., w, called direction
numbers. In Sobol’s original method, the jth number X; is generated by XORing (bitwise
exclusive or) together the set of V;’s satisfying the criterion on ¢, “the :th bit of j is nonzero.”
As j increments, in other words, different ones of the V;’s flash in and out of X; on different
time scales. V) alternates between being present and absent most quickly, while V4, goesfrom
present to absent (or vice versa) only every 28! steps.

Antonov and Saleev’s contribution was to show that instead of using the bits of the
integer j to select direction numbers, one could just aswell use the bits of the Gray code of j,
G(j). (For aquick review of Gray codes, look at §20.2.)

Now G(j) and G(j + 1) differ in exactly one bit position, namely in the position of the
rightmost zero bit in the binary representation of 5 (adding aleading zero to j if necessary). A
consequenceis that the j + 1st Sobol’-Antonov-Saleev number can be obtained from the jth
by XORing it with a single V;, namely with 7 the position of the rightmost zero bit in j. This
makes the calculation of the sequence very efficient, as we shall see.

Figure 7.7.1 plots thefirst 1024 points generated by atwo-dimensional Sobol’ sequence.
One sees that successive points do “know” about the gaps left previously, and keep filling
them in, hierarchically.

We havedeferred to thispoint adiscussionof how the direction numbersV; are generated.
Some nontrivial mathematics is involved in that, so we will content ourself with a cookbook
summary only: Each different Sobol’ sequence (or component of an n-dimensional sequence)
is based on a different primitive polynomial over the integers modulo 2, that is, a polynomial
whose coefficients are either 0 or 1, and which generates a maximal length shift register
sequence. (Primitive polynomials modulo 2 were used in §7.4, and are further discussed in
§20.3.) Suppose P is such a polynomial, of degree g,

P=s'daz? ' 4 a2 4. . 4+ ag—1+1 (7.7.2)
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312 Chapter 7. Random Numbers

Initializing Values Used in sobseq
Degree Polynomial Starting Values
1 0 1| @® (5) (15)
2 1 1 1 @ (11)
3 1 1 3 7 ®)
3 2 1 3 3 (15)
4 1 1 1 3 13
4 4 1 1 5 9
Parenthesized values are not freely specifiable, but are forced by the required recurrence
for this degree.

Define a sequence of integers M; by the g-term recurrence relation,
MZ' = 2(11MZ‘_1 D 22a2Mi_2 H---P 2q_1Mi_q+1aq_1 D (2in_q D Mi_q) (772)

Herebitwise XOR isdenoted by @. Thestarting valuesfor thisrecurrencearethat M, . . ., M,
can be arbitrary odd integers lessthan 2, . . ., 29, respectively. Then, the direction numbers
V; are given by

Vi=M;/2"  i=1,...,w (7.7.3)

The accompanying table lists all primitive polynomials modulo 2 with degree ¢ < 10.
Sincethe coefficientsare either 0 or 1, and since the coefficients of 2¢ and of 1 are predictably
1, it isconvenient to denote apolynomial by its middle coefficientstaken asthe bits of abinary
number (higher powers of = being more significant bits). The table usesthis convention.

Turn now to the implementation of the Sobol’ sequence. Successivecallsto the function
sobseq (after a preliminary initializing call) return successive points in an n-dimensional
Sobol’ sequence based on the first n primitive polynomials in the table. As given, the
routine is initialized for maximum n of 6 dimensions, and for a word length w of 30 bits.
These parameters can be altered by changing MAXBIT (= w) and MAXDIM, and by adding
more initializing data to the arrays ip (the primitive polynomials from the table), mdeg (their
degrees), and iv (the starting values for the recurrence, equation 7.7.2). A second table,
above, elucidates the initializing data in the routine.

#include "nrutil.h"
#define MAXBIT 30
#define MAXDIM 6

void sobseq(int *n, float x[])
When n is negative, internally initializes a set of MAXBIT direction numbers for each of MAXDIM
different Sobol’ sequences. When n is positive (but <MAXDIM), returns as the vector x[1. .n]
the next values from n of these sequences. (n must not be changed between initializations.)
{

int j,k,1;

unsigned long i,im,ipp;

static float fac;

static unsigned long in,ix[MAXDIM+1],*iu[MAXBIT+1];

static unsigned long mdeg[MAXDIM+1]={0,1,2,3,3,4,4};

static unsigned long ip[MAXDIM+1]={0,0,1,1,2,1,4};

static unsigned long iv[MAXDIM+MAXBIT+1]={

0,1,1,1,1,1,1,3,1,3,3,1,1,5,7,7,3,3,5,15,11,5,15,13,9};

if (xn < 0) { Initialize, don’t return a vector.
for (k=1;k<=MAXDIM;k++) ix[k]=0;
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7.7 Quasi- (that is, Sub-) Random Sequences 313

in=0;
if (iv[1] '= 1) return;
fac=1.0/(1L << MAXBIT);
for (j=1,k=0;j<=MAXBIT;j++,k+=MAXDIM) iulj] = &iv[k];
To allow both 1D and 2D addressing.
for (k=1;k<=MAXDIM;k++) {
for (j=1;j<=mdeglk];j++) iulj][k] <<= (MAXBIT-j);
Stored values only require normalization.
for (j=mdeglk]+1;j<=MAXBIT;j++) { Use the recurrence to get other val-
ipp=ip[k]; ues.
i=iul[j-mdeg[k]] [k];
i "= (i >> mdeglkl);
for (l=mdeglk]-1;1>=1;1--) {
if (ipp & 1) i "= iul[j-1]1[k];

ipp >>= 1;
iulj] [k1=i;
}
}
} else { Calculate the next vector in the se-
im=in++; quence.

for (j=1;j<=MAXBIT;j++) {
if (!(im & 1)) break;
im >>= 1;

Find the rightmost zero bit.

}
if (j > MAXBIT) nrerror("MAXBIT too small in sobseq");
im=(j-1)*MAXDIM;

for (k=1;k<=IMIN(*n,MAXDIM) ;k++) { XOR the appropriate direction num-
ix[k] = iv[im+k]; ber into each component of the
x[k]=ix[k]*fac; vector and convert to a floating
} number.

How good is a Sobol’ sequence, anyway? For Monte Carlo integration of a smooth
function in n dimensions, the answer is that the fractional error will decrease with IV, the
number of samples, as(In N)™ /N, i.e.,, amost asfastas1/N. Asan example, let usintegrate
afunction that is nonzero inside a torus (doughnut) in three-dimensional space. If the major
radius of the torus is Ry, the minor radial coordinate r is defined by

1/2
r= ([(m2 + y2)1/2 — R0]2 + 22) (7.7.4)
Let us try the function
1+ cos ﬁ r < T
f(z,y,2) = a2 0 (7.75)
0 r>rg

which can be integrated analytically in cylindrical coordinates, giving

/ / / dz dy dz f(z,y, z) = 2n°a’Ro (7.7.6)

With parameters Rop = 0.6, 7o = 0.3, we did 100 successive Monte Carlo integrations of
equation (7.7.4), sampling uniformly in the region —1 < z,y,z < 1, for the two cases of
uncorrelated random points and the Sobol’ sequence generated by the routine sobseq. Figure
7.7.2 shows the results, plotting the r.m.s. average error of the 100 integrations as a function
of the number of points sampled. (For any single integration, the error of course wanders
from positive to negative, or vice versa, so alogarithmic plot of fractional error is not very
informative.) The thin, dashed curve corresponds to uncorrelated random points and shows
the familiar N ~1/2 asymptotics. The thin, solid gray curve shows the result for the Sobol’
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Figure7.7.2. Fractional accuracy of Monte Carlo integrations as a function of number of points sampled,
for two different integrands and two different methods of choosing random points. The quasi-random
Sobol’ sequence converges much more rapidly than a conventional pseudo-random sequence. Quasi-
random sampling does better when the integrand is smooth (“soft boundary”) than when it has step
discontinuities (“hard boundary”). The curves shown are the r.m.s. average of 100 trials.

sequence. The logarithmic term in the expected (In N)* /N is readily apparent as curvature
in the curve, but the asymptotic N ! is unmistakable.

To understand the importance of Figure 7.7.2, supposethat aMonte Carlo integration of
f with 1% accuracy is desired. The Sobol’ sequence achievesthis accuracy in afew thousand
samples, while pseudorandom sampling requires nearly 100,000 samples. The ratio would
be even greater for higher desired accuracies.

A different, not quite so favorable, case occurs when the function being integrated has
hard (discontinuous) boundaries inside the sampling region, for example the function that is
one inside the torus, zero outside,

1 r <7
fay2) =1, PS (77.7)

where r isdefinedin equation (7.7.4). Not by coincidence, this function hasthe same analytic
integral as the function of equation (7.7.5), namely 2724’ Ry.

The carefully hierarchical Sobol’ sequenceis based on a set of Cartesian grids, but the
boundary of the torus has no particular relation to thosegrids. Theresultisthat it isessentially
random whether sampled points in a thin layer at the surface of the torus, containing on the
order of N2/3 points, come out to beinside, or outside, thetorus. The squareroot law, applied
to this thin layer, gives N/2 fluctuationsin the sum, or N ~2/2 fractional error in the Monte
Carlo integral. One seesthis behavior verified in Figure 7.7.2 by the thicker gray curve. The
thicker dashed curvein Figure 7.7.2 is the result of integrating the function of equation (7.7.7)
using independent random points. While the advantage of the Sobol’ sequenceis not quite so
dramatic as in the case of a smooth function, it can nonetheless be a significant factor (~5)
even at modest accuracies like 1%, and greater at higher accuracies.
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7.7 Quasi- (that is, Sub-) Random Sequences 315

Note that we have not provided the routine sobseq with a means of starting the
seguence at a point other than the beginning, but this feature would be easy to add. Once
the initialization of the direction numbers iv has been done, the jth point can be obtained
directly by XORing together those direction numbers corresponding to nonzero bits in the
Gray code of j, as described above.

The Latin Hypercube

We might here give passing mention the unrel ated technique of Latin square or
Latin hypercube sampling, whichis useful when you must sample an N -dimensional
space exceedingly sparsely, at M points. For example, you may want to test the
crashworthiness of cars as a simultaneous function of 4 different design parameters,
but with a budget of only three expendable cars. (The issueis not whether thisisa
good plan — it isn't — but rather how to make the best of the situation!)

Theideaisto partition each design parameter (dimension) into M segments, so
that the whole space is partitioned into M~ cells. (You can choose the segmentsin
each dimension to be equa or unequal, according to taste.) With 4 parameters and 3
cars, for example, you end up with 3 x 3 x 3 x 3 = 81 cdls.

Next, choose M cellsto contain the sample points by the following a gorithm:
Randomly choose one of the MV cells for the first point. Now eiminate all cells
that agree with this point on any of its parameters (that is, cross out al cellsin the
same row, column, etc.), leaving (M — 1)" candidates. Randomly choose one of
these, eliminate new rows and columns, and continue the process until thereis only
one cell left, which then contains the fina sample point.

The result of this construction is that each design parameter will have been
tested in every one of its subranges. If the response of the system under test is
dominated by one of the design parameters, that parameter will be found with
this sampling technique. On the other hand, if there is an important interaction
among different design parameters, then the Latin hypercube gives no particular
advantage. Use with care.
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316 Chapter 7. Random Numbers

7.8 Adaptive and Recursive Monte Carlo
Methods

This section discusses more advanced techniques of Monte Carlo integration. As
examples of the use of these techniques, we include two rather different, fairly sophisticated,
multidimensional Monte Carlo codes: vegas[1,2], and miser [3]. The techniques that we
discuss all fall under the general rubric of reduction of variance (§7.6), but are otherwise
quite distinct.

Importance Sampling

The use of importance sampling was already implicit in equations (7.6.6) and (7.6.7).
We now return to it in aslightly more formal way. Supposethat anintegrand f can be written
asthe product of afunction  that is almost constant times another, positive, function g. Then
its integral over a multidimensional volume V' is

/de:/(f/g)ng:/hng (7.8.1)

In equation (7.6.7) we interpreted equation (7.8.1) as suggesting a change of variable to
G, the indefinite integral of g. That made gdV a perfect differential. We then proceeded
to use the basic theorem of Monte Carlo integration, equation (7.6.1). A more genera
interpretation of equation (7.8.1) is that we can integrate f by instead sampling A — not,
however, with uniform probability density dV/, but rather with nonuniform density gdV'. In
this second interpretation, the first interpretation follows as the special case, where the means
of generating the nonuniform sampling of gdV is via the transformation method, using the
indefinite integral G (see §7.2).

More directly, one can go back and generalize the basic theorem (7.6.1) to the case
of nonuniform sampling: Suppose that points x; are chosen within the volume V' with a
probability density p satisfying

/ pdV =1 (7.8.2)

The generalized fundamental theorem is that the integral of any function f is estimated, using
N sample points z;,...,xnN, by

IE/de:/gpde<£>i —<f2/p2>]\7 /e (7.83)

where angle brackets denote arithmetic means over the N points, exactly as in equation
(7.6.2). Asin equation (7.6.1), the “plus-or-minus’ term is a one standard deviation error
estimate. Notice that equation (7.6.1) is in fact the special case of equation (7.8.3), with
p = constant = 1/V.

What is the best choice for the sampling density p? Intuitively, we have already
seen that the idea is to make h = f/p as close to constant as possible. We can be more
rigorous by focusing on the numerator inside the square root in equation (7.8.3), which is
the variance per sample point. Both angle brackets are themselves Monte Carlo estimators
of integrals, so we can write

o= (B {8 [ [f ] < [ ([ o

We now find the optimal p subject to the constraint equation (7.8.2) by thefunctional variation

O—%(/%dV—{/fdvr+>\/pdV> (7.85)
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