8.5 Selecting the Mth Largest 341

rank of the jth element of the original array of keys, ranging from 1 (if that element
was the smallest) to V (if that element was the largest). One can easily construct
a rank table from an index table, however:

void rank(unsigned long n, unsigned long indx[], unsigned long irank[])

Given indx[1..n] as output from the routine indexx, returns an array irank[1..n], the
corresponding table of ranks.

{

unsigned long j;

for (j=1;j<=n;j++) irank[indx[jl]=j;
}

Figure 8.4.1 summarizes the concepts discussed in this section.

8.5 Selecting the Mth Largest

Selectionissorting’ saustere sister. (Say that fivetimesquickly!) Where sorting
demands the rearrangement of an entire data array, selection politely asksfor asingle
returned value: What isthekthsmallest (or, equivaently,them = N+1—kthlargest)
element out of N elements? The fastest methods for selection do, unfortunately,
rearrangethearray for their own computational purposes, typically puttingall smaller
elements to the left of the kth, all larger elements to the right, and scrambling the
order within each subset. This side effect is a best innocuous, at worst downright
inconvenient. Whenthearray isvery long, so that making ascratch copy of itistaxing
on memory, or when the computational burden of the selection is a negligible part
of alarger calculation, one turnsto selection algorithms without side effects, which
leavethe origina array undisturbed. Such in place selection isslower than the faster
selection methods by afactor of about 10. We give routines of both types, below.

The most common use of selection isin the statistical characterization of a set
of data. One often wants to know the median element in an array, or the top and
bottom quartile elements. When N is odd, the median is the kth element, with
k= (N+1)/2. When N iseven, statistics books define the median as the arithmetic
mean of the dlements k = N/2 and k = N/2 + 1 (that is, N/2 from the bottom
and N/2 from thetop). If you accept such pedantry, you must perform two separate
selections to find these elements. For N > 100 we usually define k = N/2 to be
the median element, pedants be damned.

The fastest general method for selection, allowing rearrangement, is partition-
ing, exactly as was done in the Quicksort algorithm (£§8.2). Selecting a “random”
partition element, one marches through the array, forcing smaller elements to the
left, larger elements to the right. As in Quicksort, it is important to optimize the
inner loop, using “sentinels’ (§8.2) to minimize the number of comparisons. For
sorting, one would then proceed to further partition both subsets. For selection,
we can ignore one subset and attend only to the one that contains our desired kth
element. Selection by partitioning thus does not need a stack of pending operations,
and its operations count scales as N rather than as N log N (see[1]). Comparison
with sort in §8.2 should make the following routine obvious:

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

342 Chapter 8. Sorting

#define SWAP(a,b) temp=(a);(a)=(b);(b)=temp;

float select(unsigned long k, unsigned long n, float arr[])

Returns the kth smallest value in the array arr[1..n]. The input array will be rearranged
to have this value in location arr [k], with all smaller elements moved to arr[1..k-1] (in
arbitrary order) and all larger elements in arr [k+1..n] (also in arbitrary order).

unsigned long i,ir,j,1,mid;
float a,temp;

1=1;
ir=n;
for (5;) {
if (ir <= 1+1) { Active partition contains 1 or 2 elements.
if (ir == 1+1 && arr[ir] < arr([1]) { Case of 2 elements.
SWAP(arr[1],arr[ir])
}
return arr[k];
} else {
mid=(1+ir) >> 1; Choose median of left, center, and right el-
SWAP (arr [mid] ,arr[1+1]) ements as partitioning element a. Also
if (arr[l] > arr[ir]) { rearrange so that arr[1] < arr[1+1],
SWAP(arr[1],arr[ir]) arr[ir] > arr([1+1].
if (arr[1+1] > arr[ir]) {
SWAP (arr[1+1] ,arr[ir])
}
if (arr[1l] > arr[1+1]) {
SWAP(arr[1],arr[1+1])
}
i=1+1; Initialize pointers for partitioning.
j=ir;
a=arr[1+1]; Partitioning element.
for (5;) { Beginning of innermost loop.
do i++; while (arr[i] < a); Scan up to find element > a.
do j--; while (arr[j] > a); Scan down to find element < a.
if (j < i) break; Pointers crossed. Partitioning complete.
SWAP(arr[i],arr[j])
} End of innermost loop.
arr[1+1]=arr[j]; Insert partitioning element.
arr[jl=a;
if (j >= k) ir=j-1; Keep active the partition that contains the
if (j <= k) 1=i; kth element.
}
}

In-place, nondestructive, selection is conceptualy simple, but it requires a lot
of bookkeeping, and it is correspondingly slower. The genera ideais to pick some
number M of elements at random, to sort them, and then to make a pass through
the array counting how many elements fall in each of the M + 1 intervals defined
by these elements. The kth largest will fall in one such interval — cdl it the “live”
interval. One then does a second round, first picking M random elementsin thelive
interval, and then determining which of the new, finer, M + 1 intervalsall presently
live eements fall into. And so on, until the kth element isfinally localized withina
single array of size M, a which point direct selection is possible.

How shall we pick M? The number of rounds, log,,; N = log, N/ log, M,
will be smaller if M islarger; but the work to locate each element among M + 1
subintervals will be larger, scaling as log, M for bisection, say. Each round

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

8.5 Selecting the Mth Largest 343

requires looking at al N elements, if only to find those that are till dive, while
the bisections are dominated by the N that occur in the first round. Minimizing
O(Nlog,; N) + O(N log, M) thus yields the result

M ~ 2V N (8.5.1)

The sguareroot of thelogarithmis so slowly varying that secondary considerationsof
machine timing become important. We use M = 64 as aconvenient constant value.

Two minor additiona tricksin thefollowingroutine, selip, are (i) augmenting
the set of M random values by an M + 1st, the arithmetic mean, and (ii) choosing
the M random values “on thefly” in a pass through the data, by a method that makes
later values no less likely to be chosen than earlier ones. (The underlyingideaisto
giveeement m > M an M /m chance of being brought into the set. You can prove
by induction that this yields the desired result.)

#include "nrutil.h"

#define M 64

#define BIG 1.0e30

#define FREEALL free_vector(sel,1,M+2);free_lvector(isel,1,M+2);

float selip(unsigned long k, unsigned long n, float arr[])
Returns the kth smallest value in the array arr[1..n]. The input array is not altered.
{

void shell(unsigned long n, float all);

unsigned long i,j,jl,jm,ju,kk,mm,nlo,nxtmm, *isel;

float ahi,alo,sum,*sel;

if (k <1 |] k>n || n <= 0) nrerror("bad input to selip");
isel=1lvector(1,M+2);
sel=vector (1,M+2);

kk=k;
ahi=BIG;
alo = -BIG;
for (5;) { Main iteration loop, until desired ele-
mm=nlo=0; ment is isolated.
sum=0.0;
nxtmm=M+1;

for (i=1;i<=n;i++) { Make a pass through the whole array.
if (arr[i] >= alo && arr[i] <= ahi) {
Consider only elements in the current brackets.
mm++;
if (arr[i] == alo) nlo++; In case of ties for low bracket.
Now use statistical procedure for selecting m in-range elements with equal
probability, even without knowing in advance how many there are!
if (mm <= M) sel[mm]=arr[i];
else if (mm == nxtmm) {
nxtmm=mm+mm/M;
sel[1 + ((i+mm+kk) % M)I=arr[il; TheJ operation provides a some-
} what random number.
sum += arr[i];

}

}

if (kk <= nlo) { Desired element is tied for lower bound;
FREEALL return it.
return alo;

}

else if (mm <= M) { All in-range elements were kept. So re-
shell (mm,sel); turn answer by direct method.
ahi = sell[kk];

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

344 Chapter 8. Sorting

FREEALL
return ahi;
}
sel [M+1]=sum/mm; Augment selected set by mean value (fixes
shell (M+1,sel); degeneracies), and sort it.
sel[M+2]=ahi;
for (j=1;j<=M+2;j++) isel[j]=0; Zero the count array.
for (i=1;i<=n;i++) { Make another pass through the array.
if (arr[i] >= alo && arr[i] <= ahi) { For each in-range element..
j1=0;
ju=M+2;
while (ju-jl > 1) { ...find its position among the select by

jm=(ju+jl)/2; bisection...
if (arr[i] >= sell[jm]) jl=jm;
else ju=jm;
}
isel[jul++; ...and increment the counter.
}
}
j=1; Now we can narrow the bounds to just
while (kk > isel[j]) { one bin, that is, by a factor of order
alo=sell[j]; m.
kk -= isel[j++];
}
ahi=sel[j];

Approximate timings: selip isabout 10 times dower than select. Indeed,
for N in the range of ~ 10°, selip isabout 1.5 times slower than a full sort with
sort, while select is about 6 times faster than sort. You should weigh time
against memory and convenience carefully.

Of course neither of the above routines should be used for the trivial cases of
finding the largest, or smallest, element in an array. Those cases, you code by hand
assimple for loops. There are a so good ways to code the case where k ismodest in
comparison to NV, so that extramemory of order & is not burdensome. An example
is to use the method of Heapsort (§8.3) to make a single pass through an array of
length N while saving the m largest elements. The advantage of the heap structure
isthat only log m, rather than m, comparisons are required every time anew element
is added to the candidate list. This becomes ared savingswhenm > O(v/N), but
it never hurts otherwise and is easy to code. The following program givesthe idea.

void hpsel(unsigned long m, unsigned long n, float arr[], float heapl[])
Returns in heap [1. .m] the largest m elements of the array arr[1. .n], with heap[1] guaran-
teed to be the the mth largest element. The array arr is not altered. For efficiency, this routine
should be used only when m < n.
{

void sort(unsigned long n, float arr([]);

void nrerror(char error_text[]);

unsigned long i, j,k;

float swap;

if (m > n/2 || m < 1) nrerror("probable misuse of hpsel");

for (i=1;i<=m;i++) heap[il=arr[i];

sort (m,heap) ; Create initial heap by overkilll We assume m < n.

for (i=m+1;i<=n;i++) { For each remaining element...
if (arr[i] > heap[1]) { Put it on the heap?
heap[i]l=arr[i];
for (j=1;;) { Sift down.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

8.6 Determination of Equivalence Classes 345

k=j << 1;

if (k > m) break;

if (k != m && heap[k] > heap[k+1]) k++;
if (heap[j] <= heap[k]) break;
swap=heap[k];

heap[k]=heapl[j];

heap[j]l=swap;

j=k;

CITED REFERENCES AND FURTHER READING:
Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), pp. 126ff. [1]

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley).

8.6 Determination of Equivalence Classes

A number of techniquesfor sorting and searching relate to data structures whose details
are beyond the scope of this book, for example, trees, linked lists, etc. These structures and
their manipulations are the bread and butter of computer science, as distinct from numerical
analysis, and there is no shortage of books on the subject.

In working with experimental data, we have found that one particular such manipulation,
namely the determination of equivalence classes, arises sufficiently often to justify inclusion
here.

The problem isthis: There are N “elements’ (or “data points” or whatever), numbered
1,...,N. You are given pairwise information about whether elements are in the same
equivalence class of “sameness,” by whatever criterion happens to be of interest. For
example, you may have a list of factslike: “Element 3 and element 7 are in the same class;
element 19 and element 4 are in the same class; element 7 and element 12 are in the same
class,” Alternatively, you may have a procedure, given the numbers of two elements
j and k, for deciding whether they are in the same class or different classes. (Recall that
an equivalence relation can be anything satisfying the RST properties: reflexive, symmetric,
transitive. This is compatible with any intuitive definition of “sameness.”)

The desired output is an assignment to each of the V elements of an eguivalence class
number, such that two elements are in the same class if and only if they are assigned the
same class number.

Efficient algorithms work like this: Let F'(j) bethe classor “family” number of element
j. Start off with each element in its own family, so that F'(j) = j. Thearray F'(j) can be
interpreted asatree structure, where F'(j) denotesthe parent of ;. If wearrangefor eachfamily
to be its own tree, digoint from all the other “family trees,” then we can label each family
(equivalence class) by its most senior great-great-. . .grandparent. The detailed topology of
the tree doesn’'t matter at all, aslong aswe graft each related element onto it somewhere.

Therefore, we process each elemental datum “; is eguivalent to k£” by (i) tracking j
up to its highest ancestor, (ii) tracking & up to its highest ancestor, (iii) giving j to k as a
new parent, or vice versa (it makes no difference). After processing al the relations, we go
through all the elements j and reset their F'(j)’s to their highest possible ancestors, which
then label the equivalence classes.

The following routine, based on Knuth [1], assumes that there are m elemental pieces
of information, stored in two arrays of length m, 1ista,listb, the interpretation being
that 1istalj] and 1istb[j], j=1...m are the numbers of two elements which (we are
thus told) are related.

‘(eolIBWY YUON 9pISING) ¥n-oe:wed dno@ape) 0] [lews puss 1o ‘(AJuo eauswy YUON) £2Zt/-2/8-008-T (22 10 W02 1u MMM//:diy S)ISqam JISIA

SINOYAD 10 ‘sanaysip ‘sy00q sadioay [eauswnp Japio o] “pangiyosd Apouis si ‘1aindwod JaAias Aue 03 (suo siyy Buipnjour) sajl ajgepeal
-auiyoew jo Buifdoos Aue Jo ‘uononpolidal Jayun4 asn [euosiad umo Jiay) Joy Adod Jaded suo axewW 0} SIasN 18uIBIUI 10} pajueId SI uoIssIWIad

(5-80TEY-TZS-0 NESI) ONILNAINOD DIFILNTIOS 40 1V IHL :O NI SIJIOFH TvIIHdIWNN wouy abed sjdwes

"aremyjos sadinay feauswnN Aq z66T-886T (O) WyBLUAdOD sweibold ssaid Ausianiun sbpuqued Aq 266T-886T (O) WbLAdoD

