
8.5 Selecting the Mth Largest 341

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

rank of the jth element of the original array of keys, ranging from 1 (if that element
was the smallest) to N (if that element was the largest). One can easily construct
a rank table from an index table, however:

void rank(unsigned long n, unsigned long indx[], unsigned long irank[])
Given indx[1..n] as output from the routine indexx, returns an array irank[1..n], the
corresponding table of ranks.
{

unsigned long j;

for (j=1;j<=n;j++) irank[indx[j]]=j;
}

Figure 8.4.1 summarizes the concepts discussed in this section.

8.5 Selecting the Mth Largest

Selection is sorting’s austere sister. (Say that five times quickly!) Where sorting
demands the rearrangement of an entire data array, selection politely asks for a single
returned value: What is thekth smallest (or, equivalently, them = N+1−kth largest)
element out of N elements? The fastest methods for selection do, unfortunately,
rearrange the array for their own computational purposes, typically putting all smaller
elements to the left of the kth, all larger elements to the right, and scrambling the
order within each subset. This side effect is at best innocuous, at worst downright
inconvenient. When the array is very long, so that making a scratch copy of it is taxing
on memory, or when the computational burden of the selection is a negligible part
of a larger calculation, one turns to selection algorithms without side effects, which
leave the original array undisturbed. Such in place selection is slower than the faster
selection methods by a factor of about 10. We give routines of both types, below.

The most common use of selection is in the statistical characterization of a set
of data. One often wants to know the median element in an array, or the top and
bottom quartile elements. When N is odd, the median is the kth element, with
k = (N +1)/2. WhenN is even, statistics books define the median as the arithmetic
mean of the elements k = N/2 and k = N/2 + 1 (that is, N/2 from the bottom
and N/2 from the top). If you accept such pedantry, you must perform two separate
selections to find these elements. For N > 100 we usually define k = N/2 to be
the median element, pedants be damned.

The fastest general method for selection, allowing rearrangement, is partition-
ing, exactly as was done in the Quicksort algorithm (§8.2). Selecting a “random”
partition element, one marches through the array, forcing smaller elements to the
left, larger elements to the right. As in Quicksort, it is important to optimize the
inner loop, using “sentinels” (§8.2) to minimize the number of comparisons. For
sorting, one would then proceed to further partition both subsets. For selection,
we can ignore one subset and attend only to the one that contains our desired kth
element. Selection by partitioning thus does not need a stack of pending operations,
and its operations count scales as N rather than as N logN (see [1]). Comparison
with sort in §8.2 should make the following routine obvious:

342 Chapter 8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

#define SWAP(a,b) temp=(a);(a)=(b);(b)=temp;

float select(unsigned long k, unsigned long n, float arr[])
Returns the kth smallest value in the array arr[1..n]. The input array will be rearranged
to have this value in location arr[k], with all smaller elements moved to arr[1..k-1] (in
arbitrary order) and all larger elements in arr[k+1..n] (also in arbitrary order).
{

unsigned long i,ir,j,l,mid;
float a,temp;

l=1;
ir=n;
for (;;) {

if (ir <= l+1) { Active partition contains 1 or 2 elements.
if (ir == l+1 && arr[ir] < arr[l]) { Case of 2 elements.

SWAP(arr[l],arr[ir])
}
return arr[k];

} else {
mid=(l+ir) >> 1; Choose median of left, center, and right el-

ements as partitioning element a. Also
rearrange so that arr[l] ≤ arr[l+1],
arr[ir] ≥ arr[l+1].

SWAP(arr[mid],arr[l+1])
if (arr[l] > arr[ir]) {

SWAP(arr[l],arr[ir])
}
if (arr[l+1] > arr[ir]) {

SWAP(arr[l+1],arr[ir])
}
if (arr[l] > arr[l+1]) {

SWAP(arr[l],arr[l+1])
}
i=l+1; Initialize pointers for partitioning.
j=ir;
a=arr[l+1]; Partitioning element.
for (;;) { Beginning of innermost loop.

do i++; while (arr[i] < a); Scan up to find element > a.
do j--; while (arr[j] > a); Scan down to find element < a.
if (j < i) break; Pointers crossed. Partitioning complete.
SWAP(arr[i],arr[j])

} End of innermost loop.
arr[l+1]=arr[j]; Insert partitioning element.
arr[j]=a;
if (j >= k) ir=j-1; Keep active the partition that contains the

kth element.if (j <= k) l=i;
}

}
}

In-place, nondestructive, selection is conceptually simple, but it requires a lot
of bookkeeping, and it is correspondingly slower. The general idea is to pick some
number M of elements at random, to sort them, and then to make a pass through
the array counting how many elements fall in each of the M + 1 intervals defined
by these elements. The kth largest will fall in one such interval — call it the “live”
interval. One then does a second round, first pickingM random elements in the live
interval, and then determining which of the new, finer, M + 1 intervals all presently
live elements fall into. And so on, until the kth element is finally localized within a
single array of size M , at which point direct selection is possible.

How shall we pick M? The number of rounds, logM N = log2N/ log2 M ,
will be smaller if M is larger; but the work to locate each element among M + 1
subintervals will be larger, scaling as log2M for bisection, say. Each round

8.5 Selecting the Mth Largest 343

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

requires looking at all N elements, if only to find those that are still alive, while
the bisections are dominated by the N that occur in the first round. Minimizing
O(N logM N) + O(N log2M) thus yields the result

M ∼ 2
√

log2 N (8.5.1)

The square root of the logarithm is so slowly varying that secondary considerations of
machine timing become important. We use M = 64 as a convenient constant value.

Two minor additional tricks in the following routine, selip, are (i) augmenting
the set of M random values by an M + 1st, the arithmetic mean, and (ii) choosing
theM random values “on the fly” in a pass through the data, by a method that makes
later values no less likely to be chosen than earlier ones. (The underlying idea is to
give element m > M an M/m chance of being brought into the set. You can prove
by induction that this yields the desired result.)

#include "nrutil.h"
#define M 64
#define BIG 1.0e30
#define FREEALL free_vector(sel,1,M+2);free_lvector(isel,1,M+2);

float selip(unsigned long k, unsigned long n, float arr[])
Returns the kth smallest value in the array arr[1..n]. The input array is not altered.
{

void shell(unsigned long n, float a[]);
unsigned long i,j,jl,jm,ju,kk,mm,nlo,nxtmm,*isel;
float ahi,alo,sum,*sel;

if (k < 1 || k > n || n <= 0) nrerror("bad input to selip");
isel=lvector(1,M+2);
sel=vector(1,M+2);
kk=k;
ahi=BIG;
alo = -BIG;
for (;;) { Main iteration loop, until desired ele-

ment is isolated.mm=nlo=0;
sum=0.0;
nxtmm=M+1;
for (i=1;i<=n;i++) { Make a pass through the whole array.

if (arr[i] >= alo && arr[i] <= ahi) {
Consider only elements in the current brackets.
mm++;
if (arr[i] == alo) nlo++; In case of ties for low bracket.
Now use statistical procedure for selecting m in-range elements with equal
probability, even without knowing in advance how many there are!
if (mm <= M) sel[mm]=arr[i];
else if (mm == nxtmm) {

nxtmm=mm+mm/M;
sel[1 + ((i+mm+kk) % M)]=arr[i]; The % operation provides a some-

what random number.}
sum += arr[i];

}
}
if (kk <= nlo) { Desired element is tied for lower bound;

return it.FREEALL
return alo;

}
else if (mm <= M) { All in-range elements were kept. So re-

turn answer by direct method.shell(mm,sel);
ahi = sel[kk];

344 Chapter 8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

FREEALL
return ahi;

}
sel[M+1]=sum/mm; Augment selected set by mean value (fixes

degeneracies), and sort it.shell(M+1,sel);
sel[M+2]=ahi;
for (j=1;j<=M+2;j++) isel[j]=0; Zero the count array.
for (i=1;i<=n;i++) { Make another pass through the array.

if (arr[i] >= alo && arr[i] <= ahi) { For each in-range element..
jl=0;
ju=M+2;
while (ju-jl > 1) { ...find its position among the select by

bisection...jm=(ju+jl)/2;
if (arr[i] >= sel[jm]) jl=jm;
else ju=jm;

}
isel[ju]++; ...and increment the counter.

}
}
j=1; Now we can narrow the bounds to just

one bin, that is, by a factor of order
m.

while (kk > isel[j]) {
alo=sel[j];
kk -= isel[j++];

}
ahi=sel[j];

}
}

Approximate timings: selip is about 10 times slower than select. Indeed,
for N in the range of ∼ 105, selip is about 1.5 times slower than a full sort with
sort, while select is about 6 times faster than sort. You should weigh time
against memory and convenience carefully.

Of course neither of the above routines should be used for the trivial cases of
finding the largest, or smallest, element in an array. Those cases, you code by hand
as simple for loops. There are also good ways to code the case where k is modest in
comparison to N , so that extra memory of order k is not burdensome. An example
is to use the method of Heapsort (§8.3) to make a single pass through an array of
length N while saving the m largest elements. The advantage of the heap structure
is that only logm, rather thanm, comparisons are required every time a new element
is added to the candidate list. This becomes a real savings when m > O(

√
N), but

it never hurts otherwise and is easy to code. The following program gives the idea.

void hpsel(unsigned long m, unsigned long n, float arr[], float heap[])
Returns in heap[1..m] the largest m elements of the array arr[1..n], with heap[1] guaran-
teed to be the the mth largest element. The array arr is not altered. For efficiency, this routine
should be used only when m � n.
{

void sort(unsigned long n, float arr[]);
void nrerror(char error_text[]);
unsigned long i,j,k;
float swap;

if (m > n/2 || m < 1) nrerror("probable misuse of hpsel");
for (i=1;i<=m;i++) heap[i]=arr[i];
sort(m,heap); Create initial heap by overkill! We assume m� n.
for (i=m+1;i<=n;i++) { For each remaining element...

if (arr[i] > heap[1]) { Put it on the heap?
heap[1]=arr[i];
for (j=1;;) { Sift down.

8.6 Determination of Equivalence Classes 345

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

k=j << 1;
if (k > m) break;
if (k != m && heap[k] > heap[k+1]) k++;
if (heap[j] <= heap[k]) break;
swap=heap[k];
heap[k]=heap[j];
heap[j]=swap;
j=k;

}
}

}
}

CITED REFERENCES AND FURTHER READING:

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), pp. 126ff. [1]

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley).

8.6 Determination of Equivalence Classes

A number of techniques for sorting and searching relate to data structures whose details
are beyond the scope of this book, for example, trees, linked lists, etc. These structures and
their manipulations are the bread and butter of computer science, as distinct from numerical
analysis, and there is no shortage of books on the subject.

In working with experimental data, we have found that one particular such manipulation,
namely the determination of equivalence classes, arises sufficiently often to justify inclusion
here.

The problem is this: There are N “elements” (or “data points” or whatever), numbered
1, . . . , N . You are given pairwise information about whether elements are in the same
equivalence class of “sameness,” by whatever criterion happens to be of interest. For
example, you may have a list of facts like: “Element 3 and element 7 are in the same class;
element 19 and element 4 are in the same class; element 7 and element 12 are in the same
class,” Alternatively, you may have a procedure, given the numbers of two elements
j and k, for deciding whether they are in the same class or different classes. (Recall that
an equivalence relation can be anything satisfying the RST properties: reflexive, symmetric,
transitive. This is compatible with any intuitive definition of “sameness.”)

The desired output is an assignment to each of the N elements of an equivalence class
number, such that two elements are in the same class if and only if they are assigned the
same class number.

Efficient algorithms work like this: LetF (j) be the class or “family” number of element
j. Start off with each element in its own family, so that F (j) = j. The array F (j) can be
interpreted as a tree structure, whereF (j) denotes the parent of j. If we arrange for each family
to be its own tree, disjoint from all the other “family trees,” then we can label each family
(equivalence class) by its most senior great-great-. . .grandparent. The detailed topology of
the tree doesn’t matter at all, as long as we graft each related element onto it somewhere.

Therefore, we process each elemental datum “j is equivalent to k” by (i) tracking j
up to its highest ancestor, (ii) tracking k up to its highest ancestor, (iii) giving j to k as a
new parent, or vice versa (it makes no difference). After processing all the relations, we go
through all the elements j and reset their F (j)’s to their highest possible ancestors, which
then label the equivalence classes.

The following routine, based on Knuth [1], assumes that there are m elemental pieces
of information, stored in two arrays of length m, lista,listb, the interpretation being
that lista[j] and listb[j], j=1...m, are the numbers of two elements which (we are
thus told) are related.

