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Hence one step of Newton-Raphson, taking a guess z; into a new guess xy41,
can be written as
Pz
Thi1 = T — ( ’“j) - (9.5.29)
P'(zy) — P(xg) > iy (wn — i)~

This equation, if used with ¢ ranging over the roots already polished, will prevent a
tentative root from spuriously hopping to another one's true root. It is an example
of so-called zero suppression as an alternative to true deflation.

Muller's method, which was described above, can also be useful at the
polishing stage.
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9.6 Newton-Raphson Method for Nonlinear
Systems of Equations

We make an extreme, but wholly defensible, statement: There are no good, gen-
eral methods for solving systems of more than one nonlinear equation. Furthermore,
itisnot hard to see why (very likely) there never will be any good, general methods:
Consider the case of two dimensions, where we want to solve simultaneously

f(z,y)
9(z,y)

T,y 0
(9.6.1)
T,y 0

The functions f and g are two arbitrary functions, each of which has zero
contour linesthat dividethe (x, ) planeinto regionswhere their respective function
is positive or negative. These zero contour boundaries are of interest to us. The
solutionsthat we seek are those points (if any) that are common to the zero contours
of f and g (see Figure 9.6.1). Unfortunately, the functions f and ¢ have, in genera,
no relation to each other at al! Thereis nothing specia about a common point from
either f’s point of view, or from ¢'s. In order to find all common points, which are
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Figure 9.6.1.  Solution of two nonlinear equations in two unknowns. Solid curves refer to f(z,y),
dashed curves to g(z,y). Each equation divides the (z,y) plane into positive and negative regions,
bounded by zero curves. The desired solutions are the intersections of these unrelated zero curves. The
number of solutions is a priori unknown.

the solutionsof our nonlinear equations, wewill (in general) have to do neither more
nor less than map out the full zero contours of both functions. Note further that
the zero contourswill (in general) consist of an unknown number of digjoint closed
curves. How can we ever hopeto know when we have found all such disjoint pieces?

For problems in more than two dimensions, we need to find points mutually
common to N unrelated zero-contour hypersurfaces, each of dimension N — 1.
You see that root finding becomes virtualy impossible without insight! You
will aimost always have to use additional information, specific to your particular
problem, to answer such basic questions as, “Do | expect a unique solution?’ and
“Approximately where?” Acton [1] has a good discussion of some of the particular
strategies that can be tried.

In this section we will discuss the simplest multidimensional root finding
method, Newton-Raphson. This method gives you a very efficient means of
converging to a root, if you have a sufficiently good initial guess. It can also
spectacularly fail to converge, indicating (though not proving) that your putative
root does not exist nearby. In §9.7 we discuss more sophisticated implementations
of the Newton-Raphson method, which try to improve on Newton-Raphson’s poor
global convergence. A multidimensional generalization of the secant method, called
Broyden's method, is aso discussed in §9.7.

A typical problemgives N functional relationsto be zeroed, involving variables
zii = 1,2,...,N:

Fl-(xl,xz,...,xN):O 121,2,,N (962)

We let x denote the entire vector of values z; and F denote the entire vector of
functions F;. In the neighborhood of x, each of the functions F; can be expanded
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9.6 Newton-Raphson Method for Nonlinear Systems of Equations 381

in Taylor series

N
_r oFi e 2
Fi(x + 6x) = F;(x) + ; oz, 8z + O(6x7). (9.6.3)

The matrix of partial derivatives appearing in eguation (9.6.3) is the Jacobian
matrix J:

OF;

i = . 9.6.4
JJ axj ( )
In matrix notation equation (9.6.3) is

F(X + 6x) = F(X) + J - 6x + O(6x?). (9.6.5)

By neglecting terms of order §x? and higher and by setting F(x + 6x) = 0, we
obtain a set of linear equationsfor the corrections §x that move each function closer
to zero simultaneously, namely

J.6x = —F. (9.6.6)

Matrix equation (9.6.6) can be solved by LU decomposition as described in
§2.3. The corrections are then added to the solution vector,

Xnew = Xold + OX (9.6.7)

and the process isiterated to convergence. In genera it is agood ideato check the
degree to which both functions and variables have converged. Once either reaches
machine accuracy, the other won’t change.

The following routine mnewt performs ntrial iterations starting from an
initial guess at the solution vector x[1..n]. lteration stopsif either the sum of the
magnitudes of the functions F; is less than some tolerance tolf, or the sum of the
absolute values of the corrections to 6z; is less than some tolerance tolx. mnewt
calls auser supplied function usrfun which must provide the function values F and
the Jacobian matrix J. If J is difficult to compute analytically, you can try having
usrfun call the routine fdjac of §9.7 to compute the partial derivatives by finite
differences. You should not make ntrial too big; rather inspect to see what is
happening before continuing for some further iterations.

#include <math.h>
#include "nrutil.h"

void usrfun(float *x,int n,float *fvec,float **fjac);
#define FREERETURN {free_matrix(fjac,1,n,1,n);free_vector(fvec,1,n);\
free_vector(p,1,n);free_ivector(indx,1,n) ;return;}

void mnewt(int ntrial, float x[], int n, float tolx, float tolf)
Given an initial guess x[1. .n] for a root in n dimensions, take ntrial Newton-Raphson steps
to improve the root. Stop if the root converges in either summed absolute variable increments
tolx or summed absolute function values tolf.
{

void lubksb(float **a, int n, int *indx, float b[]);
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382 Chapter 9.  Root Finding and Nonlinear Sets of Equations

void ludcmp(float **a, int n, int *indx, float *d);
int k,i,*indx;
float errx,errf,d,*fvec,**xfjac,*p;

indx=ivector(1,n);
p=vector(1l,n);
fvec=vector(i,n);
fjac=matrix(i,n,1,n);
for (k=1;k<=ntrial;k++) {
usrfun(x,n,fvec,fjac); User function supplies function values at x in
errf=0.0; fvec and Jacobian matrix in fjac.
for (i=1;i<=n;i++) errf += fabs(fvec[i]); Check function convergence.
if (errf <= tolf) FREERETURN
for (i=1;i<=n;i++) p[i] = -fvecl[il; Right-hand side of linear equations.
ludcmp(fjac,n,indx,&d) ; Solve linear equations using LU decomposition.
lubksb(fjac,n,indx,p);
errx=0.0; Check root convergence.
for (i=1;i<=n;i++) { Update solution.
errx += fabs(p[il);
x[i] += plil;
}
if (errx <= tolx) FREERETURN
}
FREERETURN

Newton’s Method versus Minimization

In the next chapter, we will find that there are efficient general techniques for
finding a minimum of a function of many variables. Why is that task (relatively)
easy, while multidimensional root finding is often quite hard? Isn't minimization
equivalent tofinding azero of an N-dimensional gradient vector, not so different from
zeroing an N-dimensional function? No! Thecomponentsof agradient vector arenot
independent, arbitrary functions. Rather, they obey so-called integrability conditions
that are highly restrictive. Put crudely, you can aways find a minimum by diding
downhill on a single surface. The test of “downhillness’ is thus one-dimensional.
There is no analogous conceptual procedure for finding a multidimensiona root,
where“ downhill” must mean simultaneously downhill in N separate function spaces,
thus allowing a multitude of trade-offs, as to how much progress in one dimension
is worth compared with progress in another.

It might occur to you to carry out multidimensional root finding by collapsing
all these dimensionsinto one: Add up the sums of squares of theindividual functions
F; to get a master function F' which (i) is positive definite, and (ii) has a global
minimum of zero exactly at al solutions of the original set of nonlinear equations.
Unfortunately, as you will see in the next chapter, the efficient algorithmsfor finding
minima come to rest on global and local minima indiscriminately. You will often
find, to your great dissatisfaction, that your function F' has a great number of local
minima. In Figure9.6.1, for example, thereislikely to bealoca minimumwherever
the zero contoursof f and g make a close approach to each other. The point Iabeled
M is such a point, and one sees that there are no nearby roots.

However, we will now see that sophisticated strategies for multidimensional
root finding can in fact make use of the idea of minimizing a master function F', by
combining it with Newton’s method applied to the full set of functions F;. While
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9.7 Globally Convergent Methods for Nonlinear Systems of Equations 383

such methods can till occasionally fail by coming to rest on alocal minimum of
F, they often succeed where a direct attack via Newton's method alone fails. The
next section deals with these methods.
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9.7 Globally Convergent Methods for Nonlinear
Systems of Equations

We have seen that Newton's method for solving nonlinear equations has an
unfortunate tendency to wander off into the wild blue yonder if the initial guess
is not sufficiently close to the root. A global method is one that converges to
a solution from almost any starting point. In this section we will develop an
algorithm that combines the rapid local convergence of Newton’'s method with a
globally convergent strategy that will guarantee some progress towards the solution
at each iteration. The algorithm is closely related to the quasi-Newton method of
minimization which we will describe in §10.7.

Recall our discussion of §9.6: the Newton step for the set of equations

F(x)=0 (9.7.2)
is
Xnew = Xold + 0X (9.7.2)
where
ox=-J"1.F (9.7.3)

Here J isthe Jacobian matrix. How do we decide whether to accept the Newton step
5x? A reasonable strategy is to require that the step decrease |[F|2 = F - F. Thisis
the same requirement we would impose if we were trying to minimize

f= %F F (9.7.4)

(The % is for later convenience.) Every solution to (9.7.1) minimizes (9.7.4), but
there may be loca minima of (9.7.4) that are not solutions to (9.7.1). Thus, as
already mentioned, simply applying one of our minimum finding agorithms from
Chapter 10 to (9.7.4) is not a good idea.

To develop a better strategy, note that the Newton step (9.7.3) is a descent
direction for f:

Vf 6x=(F-J)-(-3"'-F)=—-F.-F<0 (9.7.5)
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