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Abstract. The group projector technique is developed for the representations of the direct
product form, D = D’ @ d, in whick one of them has been induced from a representation of a
subgroup. It is shown that the group projectors and symmetry-adapted bases are essentially
determined in terms of the subgroup representations, To illustrate both the technical and
conceptual advantages of the method, it is shown how the calculation of the normal modes
of pelymers (polyacetylene as an example) can be obtained using the symmetry of the monomer
only, and several results of the induction theory are reconsidered within the new framework.

1. Introduction

The induction of the representations from subgroup to group is one of the most powerful
methods in the theory of the group representations (Mackey 1952, Altmann 1977). Another
group theoretical concept, indispensable in the physical applications, the symmetry-adapted
bases, involves the group projector technique (Cornwell 1984, Chen er al 1985). This
paper is an attempt to develop this technique for the case of the induced representations.
To this end the modified version of the group projector method, involving the projectors
of the identity representation only, is applied (Damnjanovié and Milodevi¢ 1984). This
allows the more general case, the direct product of the induced representation with any
other representation of the group, to be considered. The method is svitable for computer
implementation (Davies 1982, Ping et al 1989), since it gives a prescription for solving the
physically relevant eigenproblems within the space of the initial (subgroup) representation,

To begin with, the group projector technique will briefly be reviewed in order to
introduce notation and to clarify the aim of the article. Let D(G) be the representation
of the group G in the space Hp. If D(G) decomposes into the irreducible components
as D(G) = @leauD(’”(G) (a, = 1,2,...), then there exists a symmetry-adapted or

standard basis {juz,min = 1....,r ity =1,...,au; m=1,..., gt} (where || denotes the
dimension of D™ (G)) in Hp satisfying the following conditions:
In
D(@)utymy =Y DE) (@)l pt,m’. o))
=1

To determine such a basis the group operator technique prescribes the following steps: given
the matrices of an irreducible component D®)(G), the operators
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are caleulated; the operator Pl(]“)(D, G) is the projector, and any basis in its range can take

the role of the vectors |pt,1) (¢, = 1,...,a,), determining the rest of the standard basis
as [ut,my = P)(D, G)lut,1).

A slightly modified procedure, based on the group projectors of the identity
representation, 7 {G), has recently been proposed (Damnjanovi€ and milofevié 1984). Given
the matrices of each irreducible component, DW () acting in the space C*, the projector
G(D® D) ¥ pt(D@ DWW G) (in the space Hy = Hp®C*) should be found (in the
cited paper the order of the representations is different, but it is obvious that the choice is
unimportant). Its range is a,-dimensional; denoting by {|pt.), [t: = 1,...,a.} the basis
in the range of this projector, and by {|p*m} Jm =1, ..., ||} the basis in the representative
space C* of DY (G), the vectors of the symmetry-adapted basis are obtained as the partial
scalar products |wf,m) = (W'm|ugh,.

In this paper the modified procedure is applied to the case when D{G) is the direct
product of two representations, one of them being induced from a subgroup H. It turns
out (section 2} that the group projector G(D) has the significant property: it is determined
by the corresponding subgroup projector. When the geometry of the problem is examined
(section 3), the class of operators with the same property is singled out. Among them
are the relevant physical observables, Therefore, the symmetry-adapted eigenbases, which
are important in various physical problems, can easily be found (section 4). The method
is simplified when the group G is the weak-direct product, G = HZ, of its subgroups
(section 5). As an example, calculation of the normal vibrational modes of polyacetylene
(section 6} is performed. Together with other concluding remarks, Frobenius’ theorem and
some related concepts from induction theory are reconsidered to point out the naturainess
of the approach,

2. Basic algebraic considerations

Let H be a subgroup of the group G, with the left wansversal Z = {z5,....2z1~1}
(|Z] = [%); it is assumed that zp = e, the identity element. It is well known that the

inverses of the left transversal form the right transversal, {z;', ..., z|'2';1|_1} and that, if Hg
is a right coset of H, then the sets z, Hg (t =0,...,|Z| — 1) are digjoint. To summarize,
G can be partitioned into the forms G = U,z H = U, Hz"' = U,z Hg. For fixed ¢, each
element g of G uniquely determines #(g) and h{g, t) € H such that

8 = zh(g, 2y @)

Given the |A’]-dimensional matrix representation A’(H) in the space 4, the induced
|D'|-dimensional (D] = |Z||A']) representation D'(G) = A'(H) 1 G, is constructed as
follows. The matrix corresponding to the element g € G is made of the |A’[-dimensional
submatrices D/, (g), which is 0 if the element z;"! gz, is not from H, while D] (g) = A'(k)
if z7'gz; = h € H. Using |Z|-dimensional matrices £, with elements equal to 0 except
that (E*),; = 1, the induced representation takes the form (for convenience, matrices E*

are enumerated by 7,5 =0, ..., |Z| — 1, as well as their rows and columns)
1211
Digy= Y Y 8z "8z, R)E® @ A'(h).
s,t=0 heH

Here, the Kronecker function on G (equal to 1 if its arguments coincide and zero
otherwise) vanishes whenever the first argument is not from H, while in the opposite
case it singles out the element 2 of H equal to the first argument. Given another
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representation 4(G) in Hy, the matrices of the direct product D(G) = D'(G) @ d(G) are
D(g) =3, > nen 8027 82;, W)E™ ® A'(h) @ d(g). Taking into account the factorization
(2), this becomes
|Zju1
Dig) = ) E*® @ A'(h(g, 1)) ® d(zh(g, Dz;). 3)
=0
The group projector of the identity representation can be found as the sum of the
representative matrices:

6D ==Y Dg)=—3 { 3" B0 @ Al(hz, 1) ® d(h(, r)z:(;g].
Gl i=2 Gl 5 &

As for the sum in the brackets, the index 7 is fixed; in view of (2), the sum over g splits

into the sums over h = h{g, ) and s = 1(g), enumerating for each ¢ all the elements from

H and the transversal, respectively. Only the order of terms depends on ¢, making the sum

over h and s independent:

L
|Gt

To clarify the structure of (3) and (4), the direct product of A'(H) with the subduced

representation d{G) | H, will be denoted by A(H): A(R) = A'(R)®d(h); also, the transfer
operators by *f s ® In @d(z,) (In is the identity matrix in Ha-), and B; ef ﬁ 3 by

are introduced. With the abbreviations b, = b,y and B = By, (3) and (4) are

G(Dy=— 3 E”®A'(h) ®d(zhz; ). “

ts heH

1Z]-1
D) =Y b{E® ® Ath(g, )b, G(D) = B{E® ® H(A)}B!. )
t=0

The equalities would hold for any b, and B, if E® was changed to E"; in the rest of
the paper a more general form for some expressions can be obtained analogously. The last
relations reveal a similar structure for the operators D(g) and G(D} in Hp: the transfer
operators couple them to the subgroup operators in Ha(H) = Ha @ H,s. This inspires an
attempt to study the transfer operators separately, reducing the work to the subgroup only.
The following analysis of the geometry of the problem is the cornerstone for the subsequent
applications.

3. Geometry and transfer operators

The representative space Hp of the induced representation decomposes onto the orthogonal
sum &, H,ar, with Hya = (E ® Ia)Hoa. The total space of D(G) is the direct product
Hp @ Hg, and trails this decomposition; Hp = @ Hea, with Hia = Hiar @ Hy = BHoa.
The spaces Ha- and H, are naturally identified with Hpas and Hoa, respectively.

The easily verifiable properties of the transfer operators

Blbp = 8, E5 ® Ia bisbl, = 8 ET ® I ® d(zi2;) Trblibpg = 81,85 Al

immediately vield

1
BIB,=E*®1I, BBl = =6, Y EM @Iy @d(zpz;" Te(B] B;) = 8,5]A|.
Pq

1Z|
(6)
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These relations show that bf b, and B! B are projectors, with the ranges R(b:fb,) = R(B'B) =
Hoa (thus b;‘b, = B'B). Therefore, the transfer operators are partial isometries, satisfying
BB'B = B and B'BB! = B' (and analogously for &;). The ranges of the transfer
Operators are R(B) = R(bf} = Moa and R{d;) = H;a, while R(B) = R(BBf) mixes
all the subspaces H;n. Their null-spaces are N(B') = RY(B), N(}) = HL and
N(B) = N(b,) = Hé”&. It should be recalled that the partial isometry bijectively maps
the orthocomplement of the null-space onto the range, preserving the scalar products,

In view of this, the first equation (5) clearly manifests the process of the induction. The
operator b! maps H, bijectively, at first ‘rotating’ the vectors by d%(z,) and then naturally
sending them to Hoa. The action of D(g) is disassembled to the unitary mappings of H, ;s
ontg H;a for each ¢#; all of these mappings are essentially given by A(H) in Ha.

Similarly, the second expression (5) describes how the action of the subgroup projector,
originally defined in Hg,, is extended to the whole space: the first operator B! transfers the
vectors into Hpa, preparing them for the projector E% ® H(A), while the last B transfers
the projections back to Hp. The range of H(A) (more precisely, the range of EX ® H(A)),
being a subspace in Hoa, is bijectively mapped by B into R(B), implying that the range
of G(D) is a subspace in R(B). The equation (5) is an example of how the action of an
operator in Hp is reduced to the action of the corresponding operator in the subspace FHpa.
Clearly such a reduction cannot be carried out for all the operators in Hp, and the class of
the operators allowing this will be found.

The decomposition of the space Hp provides the possibility of disassembling any matrix
A to the |A|-dimensional submatrices: A = qu EP? @ AP4, Then the transferred operator
in Hop is

def 00 1
AYEBAB=EYp il > BiATg,
g

with f, = In @ d(z); effectively this is the operator A0 = 3", BLAPIB, in Ha.
Similarly, given the operator A® in ’HA, the transferred operator in Hp is defined by
4% & pE® @ 4% p=_L Zi Z EP? @ (8,A%8)).
These operator mappings are opposite in a sense, but only the last ope is injective, and their
compositions are:
0140 _ 40 W 1 t
A= 40 4 |212 Z E"® Z (8:814778,81).
While the first composition is the identical mapping on the operators in H,, the second
one gives the cutoff of A in the subspace R(B}. This is equal to the original if and only if
both R(A) and NL(A)} are subspaces in R(B), i.e. when A+? = BBTA = ABB! = A. The
operator A with this property will be called the R(B)-localized operator. Obviously, the
transfer operator B uniquely couples the R{EB)-localized operators in Hp to the operators
in H_g,.
The arguments on the significance of such operators in the physical considerations will
be postponed, in order to state immediately a simple but important theorem.

Theorem 1. Let A be an R{B)-localized operator in Hp. Then

(i) (AC)Y® = AYOCY and (CAY® = C04Y, for any operator C in Hp;

(ii) the eigenvectors of A belonging to R(B) are bijectively mapped by B' to the
sigenvectors of A* with the same eigenvalues, i.e. [x} € R(B) satisfies Alx) = e|x} if and
only if [x}® = Bl|x} € Hya satisfies A4)x)0 = a|x)0.
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The first part is obvious, since under the conditions of the theorem AC = ABBIC.
Then from BTA(BB'|x)} = aB'|x) follows the second statement.

Since the theorem applies to the operators transferred to H,, the analogous statements,
(ACHT = A% CO and A%x)® = ix)0 implies A’TB[x)® = aB|x}°, starting from the
operators in H . are automatically verified. Under the conditions of the theorem, statement
(i) states that the transferred operators commute if and only if their originals do; hence, the
maps of the normal (Hermittan) operators are normal (Hermitian) again. Consequently, the
orthonormal eigenbasis of a normal operator A? in H» is mapped by B bijectively into the
part of the orthonormal eigenbasis of the transferred operator A®!; these vectors span the
subspace R(B). In particular, each eigensubspace of A" corresponding to a non-vanishing
eigenvalue is spanned by some of these vectors. Instead of solving the eigenproblem for
A, it suffices to solve it for A0, For each eigenvector |x)° of A, the vector B|x)? is the
eigenvector of A for the same eigenvalue. The definition of B points to the specific simple
structure of the obtained eigenvector B|x)°: its component (projection) in the subspace H;a
is

Ix) = by |x)°. N

1
VIZ]
The preservation of the eigenvalues implies that the projectors in H, and the R{B)-
localized projectors in Hp bijectively correspond, relation (5) being an example of this.
This coupling for BB and BB = I,, in the view of the theorem, means that any operator
A in Hp satisfies (BBTAWY = (ABBH® = A'®; moreover, if A commutes with B B!
{implying that R(B) is invariant subspace for A), then A'* = BBYA.

4, Symmetry-adapted bases

The procedure for finding the symmetry-adapted bases can be adjusted to the considered

form of the representation D(G). According to the remark in the introduction, it remains

to find the group projectors G, = G(D ® D™"), for each irreducible component of

D(G). But, the structure of the representation D(G) ® D®'(G) is the same as that

of D(G): it is the direct product of the induced representation D'(H) ¢ G with the

representation 4(G) ® D™’ (G). Thus, the relevant group projector is of the form (5) with
= Sz L E® ® In ® d{2) ® DW'(z;) and A(H) @ D™ (H) instead of A:

G,=BJ E®® G, H)B, G'=H(A®D")=H

Then, according to the theorem, only the basis lﬂfu)ﬂ in the range of the subgroup
projector is to be found. Mapped by B, it produces the basis |ut,}, in the range of
G, and the wanted symmetry-adapted vectors from Hp are the partial scalar products
([t my = (u*m[(B,‘[pru)o) Since the vectors [p,m)° def (.u*mi,u,tu)g obey the relations
{u m]D("}'(:::‘)|prM =3"D :(zs)l.ut#m’ ), the structure of B, enables us to solve
the whole problem in H,. That is, in accordance with (7), the component from H;, of
the symmetry-adapted vector |pt,m) is determined by the vectors |ut,m)%: [ut,m)* =
7|-Z=E‘° @ In ®d(zs) ® DY (2,)iu1,)Y; the partial trace gives finally

. 1
lntym)® = ——b, D“”

/lzl mm'
Note that the sum in the last equation deﬁnes for each s the vector in Hga, which is mapped
to |pt,m) by B.

(zs)lutum')C. (8)
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Let Hp, the representative space of D(G), be the state space of a quantum system
with the group of symmetry G. Furthermore, let A be an observable describing some
property of the system, thus commuting with the represemtation D(G). There exists the
symmetry-adapted eigenbasis of A, i.e. the vectors of the standard basis (1) can be chosen
to satisfy A|ut,m) = oy [putym). I 1. denotes the identity operator in the space of the
jrreducible representation D% (G), then the Hermitian operator A @ I+ commutes with
D{G)® D™’ (G), and with the projector G . Therefore, the observable A, = (A®1,)G, is
considered, and its eigenbasis in the range of G, should be found. Finally, the partial scalar
products of the obtained vectors with the vectors |4*m) form the required symmetry-adapted
eigenbasis of A.

Within this algorithm theorem 1 offers a shortcut. Since G, and A, satisfy the
conditions of the theorem, it is sufficient to solve the whole problem for the operator
Al? = (A®I,.)Y9G}". The obtained eigenvectors of A} from R(G}®) should be transferred
by B, and the partial scalar products give the eigenbasis. Again, as has been described
above, the whole problem can be solved in Ha. Note that within the solving of the
eigenproblem of Aﬁo, the quantum numbers imposed by symmetry of the subgroup are
pointed out and incorporated in the final symmetry-adapted basis.

The requirement [4, D(g)] = O for each g in & imposes some conditions on the matrix
elements of A. If coset representatives are taken for g, a straightforward calculation yields:

1

BY AT By = MGz, PIBlp A" " AN =

> alaz;t, gnpfa. )
qp

Note that the sufficient condition for validity of (9} is that A commutes with the operators
representing the transversal.

5. Special case: the transversal is a subgroup

In the previous sections no restriction on the strocture of the group has been imposed, and
the conclusions are quite general. Some additional results can be derived when the group
G is the weak-direct product (Jansen and Booth 1967) of its subgroups K and Z, i.e. when
the transversal itself is a subgroup of G. This immediately simplifies calculations, since
h(z;, 1) = e and Z;,) = 272, For example, the expression (9) becomes

AP = g, AP 0gt A% = Z BLAP. (10)
P

It has been shown (Damnjanovié and Milofevi¢ 1984) that the group projectors reflect
the group structure: G(D) = H(D)Z(D). Using A(e) = Ia in the matrices D(z;} from
(5), the second factor-projector is: Z(D) = 7 L, D(@) = i 2. b1 &, bl = BB'. The
last equality holds due to the group property of Z: for fixed ¢, Zqg,) runs over the Z, i.e.
the second sum is independent on ¢. Thus the subspace R({B) is more clearly described as
the range of Z(D). Looking backward to the general case, it becomes clear that BB is
Z(D), the projector for the subgroup generated by the transversal.

Leaving aside other theoretical aspects, the case when Z is a cyclic subgroup will be
considered. If z; = z is the generator of Z, the elements of the transversal are z; = z°.

Then, it is easily scen that 1{z,) = ¢ — 5, and with § &f By the equations (10) read:

APT = ﬁ#AP—G»Uﬂqt A = Zﬁp?ApU_ (1
P
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Since d(G) | Z is a representation of the cyclic group Z, it can be decomposed onto the
irreducible ones, which are all of the form d%(z*) = e**, Therefore, there exists a unitary
matrix S, such that 85 = Sdiag(e”, ..., e%s%)S? (each k, least |A’| times). Then (11)
becomes a Fourier-type relation of the operators A and A'0:

STAWs =3 diagle™®, ..., %) (sTA0S)  or AN =1 8,8, ) ektAn,
£ tp s

(12)

Let it be noted here that groups with such a structure frequently appear in the physics
of discrete systems. All the point groups are of this type. The symmorphic space groups
essentially have the same structure, since the translational group is the direct product of
three cyclic groups; taking it for Z, the last expression is obtained again, with p and
g being three-dimensional integer vectors. In particular, each line group (MiloSevié¢ and
Damnjanovié 1992) is the weak-direct products of one point group and one infinite cyclic
group.

6. Example: normal modes of polyacetylene

Trans-polyacetylene is the simplest planar polymer. The equilibrium coordinates of the
carbon and hydrogen atom of the sth monomer are (Chlen 1984). Re(s) = ((—1)'X¢, 0, sa)
and Ryu(s) = ((—1¥ Xy, 0, sa), where ¢ = 1 24 A is half of the translational unit of the
poilymer, while X¢ = 0.33 Aand Xy = 1.41 A. The symmetry group of this polymer
is (MiloSevi¢ and Damnjanovié 1993) the line group G = L2)/mcm = Ih,2;, ie. the
weak-direct product of the point group H = Dy, = {e, oy, o4, Uy} (0, and o), are the
reflections in the xz and xy planes, U, is the rotation for 7 around x axis) and the infinite
cyclic group Z = 2; generated by z = (Caa) (the rotation for = around the z axis followed
by the translation for a along the z axis). Obviously, the monomer with s = 0 is invariant
under the subgroup f, and the rest of the polymer is obtained by the action of Z on this
monomer,

The potential of this system is U = 33, 3 (U, with s,r = 0,%1,... and
@, B = C,H. The two-particle interactions depend on the types of particle and their
distances only: U‘,fﬂ“(lfrm — 73g|) = Uns(s — ¢). Tts second derivative at the equilibrium
configuration is denoted by Uyg(s — £). Being cyclic, all the y coordinates are ignored. In
the view of this, the infinite-dimensional polymer configurational space Hp is decomposed
onto the orthogonal sum Hp = @;H; of the four-dimensional monomeric spaces H; (two
dimensions for each atom). To find the normal modes, the eigenproblem of the (infinite-
dimensional) dynamical matrix

v _ 1 PUR) o
-1 —\/”Tmﬁa"'mfa’f'rﬁj (I-J =x,z)
should be solved. This matrix can be written in the form W = 3" E™ ® W*, where W*
is the four-dimensional matrix with the elements Wig/. In agreement with (11), only the
blocks W0 will be studied carefully. For
(Xo = (=17 Xp)?  sa((—1)'Xy — Xg)
(sa((—l)"Xa — Xp) s2a? )
(Xo — (=1 Xp)? +5%a?

these matrices for s £ 0 or o # B are ngj = J‘:TEF gﬁ(s)(Rg(s))j. As is well known,
the translational invariance of the whole system, i.e. the conservation of the momenta,

R3(s) =
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manifests as 3, /Fatig Wogi = 0, implying Wi = — Zxﬁ _ ng} (the primed sum is
performed over pairs s, 8 different from 0, &).

The form of Rg(s) and the fact that the potential is a real even function of s (i.e. of the
distance), lead to some special properties of the matrix elements wy (k) > gg; et
from (12). For i = j they are real and even in k, satisfying

wii (k) = wlj (k) = Z»ggﬁ cos(ks).

QOn the coatrary, for { # j, they are pure imaginary and odd in &, with
wit (k) = Wi (k) = —whi(w + k) = 121 3 sin(ks)

(vanishing for k = 0, 7). For convenience, ng(k), wﬁ}(k} and wfifi(k) will be denoted by
Cj.(k). H}(k) and wj(k), respectively.

The matrix W commutes with the dynamical representation §V(G) = D(G) of G, which
is the direct product of the permutational D'(G) = S(G) and the vector representation
d{G) = V(G). 1t is easy o calculate:

Vel =Ve=h Ve =vU)=-v@ =, 5

(I is the two-dimensional identity matrix). Each type of atom forms one e; orbit of G,
with H as the stabilizer group (Milofevi¢ and Damnajanovié 1993). This means that
in the monomer permutational representation A'(H) = Y(H) the elements of H are
represented by Y(h) = I, and that the monomer dynamical representation is diagonal
A(HY = Y(H) @ V(H) = diag(V(H)}, V(H)). Since the representation §(G) is induced
from the Y(H), i.e. S(G) = Y(H)} 1 G, the eigenproblem of W can be solved at the level
of the monomer using the developed theory.

The irreducible components of the dynamical representation of the polyacetylene are
(MiloZevié and Damnjanovié 1993, table 14):

5Y(G) = 2047 + 2045 + 2A] +20AT +4:Ea+ I (4*Epy + 4% En)
ke(0m)

+20B} +20BF + 2.5+ Y (7*Esg + 2% Ep,).
ke(@ur)

The representations in the second line, containing the label B, are related to the
displacements along the y axis {in Milo3evi€¢ I and Damnjanovi¢ M (1993} the full vector
representation is considered), implying W“’ 0 in these cases, As for remaining irreducible
components of SY(G), the operator WJ"J should be found, and its eigenproblem solved. The
relevant matrices for the irreducible representations are given in the table 1.

The projectors H, = H(A ® D®) are P, = diag(1,0,1,0) for DWW = A7, oA},
P_ =diag(0,1,0,1) for D) = 4A7, oAT,

re=taa((1 1) (4 700 D(5 )

for D% = ;¥E, , ;*E 5\ x Es.
It should be noted that there are five different operators 8, giving rise to the five operators
(W ® 1,)¥ by (12). All of them are essentially of two types. As for the one-dimensional
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Table 1. The matrices of the irreducible components of the dynamical representation of
potyacetylene. After the label of the ireducible representation in the first column, the
corresponding representative matrices follow {columns 2-6). In the last column the matrices

8" = L@ V(E) ®DWE) are given. P = (0 1), K@) = () and F1®) =
diag(el(rt+k)s‘ e:(:r-k)s‘ eik.r, e-ik.:l ei(:l’-!-k)s, ei(rr—k)s‘ eiks‘ e""").

Rep. e Gy on 18 z ;;f'

(,Ai 11 1 1 diag((—1)°, 1, (1Y, 1)
043 11 1 =l diag(1, (=1)°, 1, (=1)%)
0By 1 -1 -1 1 diag((—1).1, (= 1)*. 1)
0B} 1 -1 -1 -1 diag(l, (—~1¥. 1, (=1)")

KE, B B P K F(ky

YWY o w vt H
)

KBy b b Kx+% Fa+d
1By DI R P K(E) (5
iiEs, B —h -7 K% Fo(4)
En B - -P K+4) F@+$
1;.53 Iz =/ -F K(%) Fs(%)

representations the result is
G@ 0 wi(@ O
w=1 0 CG@ 0 wig
! wilg) O Hi(g) O
0 wile) O Hig)
Here, ¢ = 0 and g = 7 for the representations UAE!: and oA]i, respectively, and § = 7 +¢.
Similarly, for the two-dimensional representations

(@ 0 —C@ 0 W@ 0 w@ 0
0 @ 0 Cg 0 w@ 0 —wi))
Cig) 0 Cg) 0 wig) 0 wig) O
v | 0 —cw 0 @ o w0 wi@
=l w@ 6 -wi@ © HNG O -H{g) 0
0 w®) 0  wig) O HN® 0  HYQ
—wi@ 0 wilg) O Hi 0  H{g 0
\ 0 wi@ 0 wig) O —HNg 0  Hig/

where g = %, ¢ = 7 + 4 and ¢ = I for the representations ;9E, , ;YE, and ,Ea,
respectively.

It remains to multiply these matrices by the group projectors, and to solve the
eigenproblems of the products. The dimensions of the eigenproblems are essentially
equal to the frequencies of the corresponding irreducible components, i.e. two for the one-
dimensional and four for two-dimensional components. If

C@O+H@ o ,~ 2w=~(q)i
2 Ci(g)— Hi(g)
d@)=+cg) T  alg) =+ 1

aj(g) =

and

, s H Citg) — H} :
o (g) = ,(q)w; ,(q)i ,(q)2 ;(g) T+x5g) fori = x. 7
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the eigenvalues and the eigenvectors for the one-dimensional representations are:

- . X 1 X X
pdpy 1 awllm), —-————2(1 iag‘(n))(] +af(x), 0, £aj(x), 0)

1 X X
m(l d: a3 (0), 0, :tal (0), 0)

I

0AT 1 &i(0),

-, z Z Z
oAy @i (0), W ET) (0, 1% 25(0), 0, 2a3 (0))
VAT WL(T), —eeee (0, 1 £ a(), O, af (7)),

201 £ ai ()

The translational invariance, expressed as mcCi(0) = myH} (0) = —./mcmyw] (0), gives
wf,_ (0) = 0, revealing the translational x and z modes gA'f‘ and oAg. The eigenvectors
coordinates should be multiplied by the square roots of the corresponding atomic masses,
to get the precise geomeirical notion of the vibrations of the monomer with s = 0, and
the additional action of 8° gives, due to (8) the displacements in the sth monomer. The
two-dimensional representations can be treated along the same lines, but the results are
omitted, being lengthy enough, with no essentially different point.

It should be emphasized that the modified group projector technique enabled us to reduce
all the calculations of the normal modes (i.¢. infinite-dimensional problem) to the monomeric
level (finite-dimensional); as has been explained in (Damnjanovié and Milogevié 1984}, it
remains to solve a few eigenproblems of finite-dimensional matrices for the eigenvalue 1,
to derive the normal modes and frequencies. Let us mention here that this procedure has
already been implemented in the computer program POLSym to find the normal modes, and
some other characteristics of polymers.

7. Concluding remarks

The connection between a representation of the subgroup and the induced representation of
the group is analysed. The resulis enable us to solve the problem of the symmetry-adapted
eigenbases at the level of the subgroup solely, pointing out the relevance of the quantum
numbers based on the subgroup symmetry.

The proposed group projector technique appears as a natural method to deal with the
induced representations. Although it seems that the most of the induction theory can be
interpreted within this concept, only severai theorems (Altmann 1977, section 11) will
be re-derived here in order to illusirate the basic ideas. To begin with, recall that the
trace of the projector G(D & D) is the frequency of the irreducible representation
DW(G) in the representation D(G). Then a radically shortened proof of the Frobenius
reciprocity theorem is offered: with D(G) = (AM(H) t G) @ DWW (G), i.e. A(H) =
AYH) ® (D®”(G) | H), expression (5) implies that the frequency of D®™(G) in
AW(H)Y t G is equal to the frequency of the irreducible representation A™Y(H) in
DWW (G) | H, ie. to the frequency of AY(H) in D¥/(G) | H. The Burnside theorem
appears as the special case for H = {e} and AM(H) = 1; the induced representation
D'(G) is just the regular one, while the subgroup projector becomes H(1 ® D'y = I,.,
with the trace equal to p. The frequency theorem for the induced representations, stating
that the frequencies of 7(G) in A{(H) + G and J(H) in A(H) are equal, is an immediate
consequence of (3), for 4(G) = I(G). The theorem on the equivalence of the representations
DI(G) = (A(H) + GY® d(G) and D,(G) = {A(H) ® (d(G) | H)} + G is similarly
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proved: for any irreducible representation D%)(G), both the projectors G(D| ® D®™")
and G(D; @ D™") are transferred to the subgroup projector H(A ® d ® D®"), and
thereby their traces are equal. Further, the transitivity of induction, i.e. the equivalence of
D =A(K)1t G with (A(K) t H) 1 G for K < H < G, is seen as the double transferring:
G(D ® D) = ByH((A(K) 1 H) ® D®')B], = ByBxK(A ® D™ )BL Bl (with the
obvious meaning of By and Byg), guaranteeing the same irreducible components for both
the representations.

The dynamical representation of the discrete system, which is important when the
normal modes are sought, is the direct product of the vector representation and the
permutational representation. The latter is often obtained as the induced representation,
from the permutational representation of the stabilizer group of a subsystem, In such cases
the developed theory enables us to work with the subsystem and its symmetry group only.
A typical example, treated in this paper, is the polymer, the normal modes of which can
be derived through the procedure involving one monomer only. It is important to note
that there are other physical situations quite analogous to this (Elliot and Dawker 1979).
For example, when the molecular orbitals are calculated as the linear combination of the
atomic orbitals, the procedure is the same as that for the normal modes, only the vector
representation has to be substituted with another one (some of the irreducible representations
of the full rotational group, subduced to the orthogonal subgroup of G) (Wigner 1959). The
method suggested has been implemented within the computer program POLSym (MiloSevic
and Damnjanovié¢ 1992), designed for calculations in polymer physics.

Acknowledgment

This work is supported by National Science Foundation, grant E-01-01.

References

Altmann $§ L 1977 Induced Representations in Crystals and Melecules (London: Academic)

Chen J Q, Gao M ] and Ma G Q 1985 Rev. Med. Phys. 211

Chien I C'W 1984 Polyacetylene (Londen: Academic)

Comwell ] F 1984 Group Theory in Physics (London; Academic)

Damnjanovié M and MiloSevié | 1984 J. Phys. A: Math. Gen. 27 4859-66

Davies B L 1982 Physica A 114 507-17

Elliot J P and Dawber P G 1979 Symmetry in Physics (London: Macmillan)

Jansen L and Boon M 1967 Theory of Finite Groups: Applications in Physics (Amsterdam: North-Holland)

Mackey G 1952 Ann. Math. 55 101-39

MiloSevié I and Damnjanovié M 1992 Preprint FPBU 01/92

1993 Phys. Rev. B 47 7805-18

Ping J L, Zheng Q R, Chen B Q and Chen J Q 1989 Comput. Phys. Commun, 52 355-73

Wigner E P 1959 Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra (New York:
Academic)




