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Abstract. The technique for determination of the symmetry adapted bases for finite-
dimensional representations of the Lie groups is developed, in analogy to the finite group theory.
The method uses the corresponding Lie algebra, and relates the group projectors to the Casimir
operators. As an application to the semisimple algebras, the general formula for generating
function of the values of the Casimir operators is established.

1. Introduction

The problem of finding the standard, or the symmetry adapted basis, frequently appears
in different physical theories. As for the finite groups, it is solved by the group projector
technique. The same method, involving the summation over the group, is possible, although
rarely applied, for the compact Lie groups, while for the other groups such procedure cannot
be extended. On the other hand, the recently developed modification of the group projector
technique [1, 2] avoids the summation over group, using for each irreducible component
D™ (G) of the representatio®(G) the single group projectoG (D ® D™*), which can

be calculated with the help of the generators of the group only. Therefore, it is natural to
attempt to generalize this procedure to Lie groups.

Such generalization is the main aim of this paper. Due to their relevance, and in
order to preserve the clarity of the idea, the scope of this study is restricted to the finite-
dimensional decomposable representations, which enables one to avoid the cohomology
theory [3]. Within this framework, the semisimple groups are the most interesting examples,
the more so because of the Casimir operators theory, which for such groups solves some
neighbouring problems. After introducing basic concepts and notation (section 2), the
algorithm is formulated through the single Casimir operator, and the method of generating
the series of Casimir operators is explained in section 3. Finally, several examples are
studied to point out some common characteristics of the approach.

2. Group projectors

Let D1(G) and D,(G) be representations of the grodp acting in the|D1|- and | D;|-
dimensional space${; and H,, respectively. The dual spack of H; carries the

representatiorD; (G), dual (or contragredient) t®.(G): Di(g) = D{’l(g) (for unitary
D(G) it is equal to the complex conjugated representation). This defines the product
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representation in the spaéé& ® H;. The subspaceé of the fixed points for this action is
the invariant subspace in which th#,(G) ® D;(G) is reduced to the (multiple) identity
representation. 10 is the isomorphism of the spaéé, ® 7; onto the space Ho(#h{1, H>)
(of the linear operators mappiriy; into H,), the group action in the latter is naturally
imposed by

¢T = Q(D2(g) ® Dj(g)Q* T = Dy(g)TD1(g™) T e Hom(Hi, Ho). (1)

Obviously, Q0 maps F onto the space of the intertwining operators, Hgff1, H>):
QF = Homg (H1, H2). Hence, the dimension ¢F is equal to the intertwining number [4].

Let the vectors of the basifi; 1) i = 1,...,|D;|} in H; transform according to
Di(9)liz 1) = Y174 Dyji(9)1j: 1). Recall that the dual bas{gi; 1/ i =1,.... [D1l} in 7}
is given by(j; 1|i; 1) = é;;, i, j =1,...,|D4|. Then for eachx) in H, ® H}, the vectors
li;2,x),i =1,...,|Dq|, from H, are uniquely defined by

| Dy

) =Y 1i:2,x) ® (i . @)
i=1

In particular, for|x) € F, the conditionD,(g) ® D;(g)|x) = |x), in the form

|Dy]

i=1

|D1| | Dy
(Da(9)li:2.x)) ® (ZD’U,»(g)u; 1|> =Y 2.0 ® (i 1]

j=1 j=1
gives |j; 2, x) = Dy(g) Zlgll‘ Dy;;:(9)lis 2, x). Multiplying both sides withD,(g~1), and
substitutingg by g1, it follows that

|Dy|
Da(9)li; 2,x) = ) D1;i(8)lJ; 2, x). (3
=1

J

From the operator point of view, expression (2) means that the véefoe F is by
the isomorphismQ mapped into the operataP(|x)) € Homg(Hi, Hz), having, in the
Dirac notation, the same form ds). Then (3) shows thal; 1) and its ‘twin’ vector
li; 2, x) = Q(|x))|i; 1) have the same transformation properties.

In what follows, D1(G) is the irreducible representatio)?”(G), in the space
H1 = H. This ensures independence of the vectgys2, x)| j = 1, ..., |Di|}, since
they transform according to the irreducible representation. ABeG) and H, are
denoted byD(G) and H. When the matrices oD™(G) are given, the standard basis
{lum)lm =1, ..., |p|} in H, is defined by the group action

||
DW(g)lum) =Y Dy ()|pm"). @)

m'=1

Schur’s lemma easily shows that the vectors of this basis are uniquely determined, up to a
common constant.

Let the basis in the subspad@® of the fixed points ofD(G) ® D™ (G) in H ®H,,,
be

Ut )l =1, ... |FW. (5)
According to (2), each of these vectors uniquely determines the vectors

{lutym)im =1,..., |ul} (6)
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such that

|

) =Y lptm) ® (u'm]. ™

m=1
In the case that the scalar products are suitably defined in all the spaces, and the orthonormal
bases are dealt with, the right-hand side of (7) should be multiplied by the constant
1//|p]. Transforming undemD(G) like |um) in (4), the vectors (6) are the standard
subbasis inH, and span the irreducible invariant subspdgé“~). The direct sum
HW = EBKQH(“W is the maximal invariant subspace H carrying the multiple [(F*|

times) of the representatioR* (G). Finally, the total standard basis # is
{ptam) s 1, =1, |\ FPm =1, ). ®

To summarize, the procedure to obtain the standard basis consists of two steps. First, the
basis{|ut,)} of the subspac& ™ for each irreducible component is to be found. Afterward,
the standard subbasis in egklY” is derived: for each vectdyz,), the operatorQ(|uz,))
from H,, to H), maps the standard bagjsm) into

|t m) = Q(|put, )| m). 9)
Within Dirac’s notation (7), this relation becomes the partial scalar product (only in

Hw) of |ut,) with |um), which can be found straightforwardly. Thus, the problem of
deriving the standard basis (8) effectively reduces to finding the basis @)t .

To shorten the notation, Ief(G) = D(G) ® DWW (G) and Hr = H ® H;m. The

projector onto the subspad&é” of the fixed points isG(I") = Z,ﬂ |t ) (ut,|. The vectors
of 7 are the eigenvectors for eigenvalue 1 of all the operators of the represeitation
Then the projectoG** (D) onto the spacé{® is related to the projecto& (I") through
the partial trace over the spagg™:

G"W(D) = |u| Tr, G(D ® D). (10)

This relation can be viewed as an operator analogy of (9).
As for the finite groups, sinceF™ is the subspace of the (multiple) identity
representation of;, we have the usual expression

1
GI) == ) T
Gl &2

Also, (10) becomes the familiar expression (with the charactgrs

el .
GW(D) = "W ()D(g).

G| ==
Nevertheless, the elements of the group are monomials over the generators, and the common
fixed points of the generators are automatically the fixed points for the whole group. This
has been used to show, [2], that for unitary representations, the subB@ads the kernel
N (K) of the suitably defined operator, determined only by the genergers. ., g, } of
G: if H; are the hermitean operators such thag,) = €7©), then

Y
F = N(K) K =Y H%g). (11)
i=1
Therefore, the group projector takes the suitable f6r¢f) = lim,_, _,, /2% This relation

will be generalized to the Lie groups, when the elements of the Lie algebra take the role of
the generators.
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3. Casimir operators

It is known that the derivatives (in the identity of the Lie groGp of the representation
I'(G) are the representatioil(L), of the corresponding Lie algebia At this level, 7
is characterized as the maximal subspace annihilated(by, since each vectdwr) € Hr
is invariant undef” (G) if and only if it is annulated by the operatolXL). If {l1, ..., {1}
is a basis ofL, then the annihilator of th& (L) is equal to the intersection of the kernels
N(T (). Instead of the calculation of all these subspaces and their intersection, any
auxiliary scalar product can be introduced in order to define the adjoined opeFatéis
Then, analogously to (11)
IL|
F® = N(K), K() =Y TII)T ). (12)
i=1
Being the sum of the positive operatofs(I") is positive itself; its kernel is the intersection
of the kernels of the addends, white'(I'f(7;))I'(;)) = N(I'(/;)). The group projector
can be defined again as(I') = lim,_,_o G(T', 1), with G(I',t) = e/2KM _|n this
context the operatok (I') serves instead of the group projectgE and the standard
basis are derived with the help & ("), as well as the group projector itself. Since
C() = D) ® Ly + Ip ® DW' (1), with D™’ (1) = —D™", the operato (I') becomes
IL]
K(I) =K(D)® Ly + Ip ® K(D) + Y (D'(l) ® D™ (I;) + D) @ D' (1;)). (13)
i=1

It may seem strange that the operato(I") depends on the scalar product which is
arbitrarily defined. However, althougK (I") depends on this product, its kernel, which
is the only relevant notion for the proposed algorithm, does it is defineda priori,
through the group actioR (G). This observation resembles the fact that in the general case
there is no natural scalar product, from the group theoretical point of view. In the special
cases, some underlying scalar product, usually defined by the physical problem, may be
applied. The example of the finite and compact groups can be reconsidered from this point
of view, understanding the expression (11) as the special case of (12) for un{i@@py

The method can be further developed for the semisimple groups. In the complexified
algebra we have the Cartan—-Weyl's ba@is...,[|,)} = {hi,elli =1,...,r; a € A} (ris
the rank ofL, and A is the set of L| —r roots), such that, for the appropriate scalar product
in Hr, T'(h;) are hermitean, whild'f(e,) = I'(e_,). Thus (13) becomes the Casimir
operator [4, 5]

K@) =) T%h)+ > T(ea)T(e—a) (14)
i=1 acA

commuting with all of the operatois(L) andI"(G). Obviously, its kernel is the subspace of
the irreducible representation with weight 0, i.e. the identity representatich éfence, in
the proposed technique of finding the standard basis for the represemtéationthe Casimir
operatork (D ® D™") is found for each irreducible component, and the orthonormal basis
|ut,) in its kernel. Then the standard basis is easily obtained according to (9). This seems
to be simpler in comparison to the usual procedure, where the eigen problem for the set of
r independent Casimir operators is used to determine only the decomposiftoomb the
multiple irreducible subspacgg™, while the standard bases within them are looked for
independently.

SinceH™ is determined by the projector (10), the derivation of this projector, through
the relation betweelk (I') and G(I") and (10), is equivalent to the solution of the common
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eigen problem of the set of independent Casimir operators for the eigenvalues corresponding
to DW(G). Indeed, equation (14) gives
IL|
K(I)=KMD)® Ly +Ip @ K(DW)+2)  D(l;) ® D). (15)
i=1
The last term acts on ea¢fi) € 7% as—2I ® K (D™)'): the condition'(;)| f) = 0 is used
in the formD(I;) ® 1,1 f) = —Ip ® DW'(I;)| f). Furthermore, sincé, ® K (D) =k, I,
the equationk (D) ® I, f) = Ip ® K(D™)|f) is automatically fulfilled. This shows that
FW < N(K(D) ® I, — k,I), implying that H* is the subspace of the eigenspace of
K (D) for the eigenvalué,,, i.e. that each vectdr) from H* satisfies

K(D)|x) =k/4|x>- (16)

According to (10), withG(T', 1) = €//2KM  GW (D) is the limit ¢ — —oo) of the operator
function
G"W(D,1) = |u|Tr, G(D ® D™, 1)
L]
= |l expl(z/2)(K (D) + k,Ip)]Tr, exp[t D) ® D“‘”(li)}. (a7)
i=1
Although G (D, t) is not a projector for finite, the vectorguz,m) are its fixed points.
The first factor explt/2)(K (D) + k,Ip)] acts as &+ in H*, and this subspace must be
the eigenspace for the whole series of Casimir operators
C(Dy= > D(y)...DE) TeDW i, ... DWI) (18)
which obviously appear in the expansion of the last factor:
IL|

. 21
D(l;) ® DWW (1,»)] =Y SCcH(D). (19)
= sl
Thus, the function (19) is the generating function for the Casimir operators. Also, the
function

C"(D,t)=Tr, exp[r
i=1

IL] -1 =)
BW(D,1)=Tr, (1 —tY DU ® D”‘”’(l,»)) = r'c (D) (20)
i=1 s=0
can be used to obtain a compact form for a number of related expressions [4, ch 9].

4. Examples

In the usual example of the Lie algebra(3y the maximal weighiw = M = 0, % 1...
characterizes thgu| = (2M + 1) dimensional irreducible representations, with the known
matrix form [6]. The matrices of the irreducible representations are chosen such that the

Cartan—-Weyl's basi$H, E. , E_} (of the complexified algebra @, C)) is represented by

MFm)MEm+1)
- 2
while K(M) = MM + 1)Iy. Relation (16) immediately gives the condition
K(D)|Mtym) = M(M + 1)|Mtym). The rank of the algebra is 1, and this equation
completely determines the spagé™’.

The next example is the Lorentz algebra(1s®). The irreducible representations of
the complexified algebra ¢b, 3)¢c = sl(2, C) @ sl(2, C) are classified according to the pairs

Dy (H) =m8um Dy (Ex)

m'm m’,m+1
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w = (M1, M), whereM; is the maximal weight for the correspondingzIC) ideal. The
sum (13) split into sums over ideal& (I') = K1(I") + K»>(I"). Now, equation (16) for the
irreducible componend™vM2)(G) reads

(K1(D) + K2(D))|x) = (M1(M1+ 1) + Ma(M3 + 1))|x).

This equation does not determine the subspa¢¥:*2)  since it does not distinguish
between the representations with the samig(M; + 1) + Ma(M2 + 1). In the Dirac
representation, [7], for the massive séjnfermions, the rotations and the boosts are
generated by the matrices

1 . 1 .
pr=-2(5 %) ow=-3(0 %)

Analogously, in the fundamental representatibfe:?(G) (the other one,D©2)(G), is
obtained by th? cpmplex conjugation)29 (r;) = —Zioy, DGO(p,) = 30;. The operator
K = D ® D=9 and the projector onto its kerne(I"), are

(3 1) an-(5 7)

where

5 0 0 -2 1 0 0 2
02}0700 b:}o—loo
21 0 0 7 O 210 0 -1 O
-2 0 0 5 2 0 0 1

1 0 0 1

C_}OOOO

410 0 0 O

1 0 0 1

Finally, the partial trace o& (") is the projector

1 0 -1 O
0 1 0 -1
-1 0 1 0
0O -1 O 1

1
GEO(D) = 2
(D) =3

Its range,H@vo), is spanned by the vectors satisfying both of the equation@)|x) =
Mi(My + D|x) and Kx(D)|x) = M>(M> + 1)|x), with M, = % and M, = 0 (or one

of them together with (16)). Obviously, the range GfT") is spanned by the vector
1(3,001) = 3(1,0,0,1,-1,0,0, —1), giving as the standard subbasis the vectors (the

absolute basis takes the role of the vectgrsn)})

1 1 1 1
Z0)11)=-—"(@1,0-1,0,|[=,0)12)= —(0,1,0,—-1)}.
H(Z > > «/2( ) (2 > > «/é( )}

Analogously, the standard subbasis M§ = 0 and

1 1 1 1 1
My,="i 0,-)11)=—-(0,-1,0,-1),((0, =) 12)=—-(1,0,1,0)¢.
2 2 IS {‘( K 2) > \/z( K e 9 )7 ( 9 2> > \/Q( 9 b t )}

The last example is the group &). Its eight-dimensional complexified algebra is of
rank 2; one Cartan—-Weyl's basis{i#l1, Ho, E+,, E+p, E+.}, Where the simple roots are

o= “é) ande = (; _ﬁ)

2" 2 2 2
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while the remaining positive root i& = (1,0). Due to the relation £y, E.] = Eq,
the representation is given only by the matricesHfand simple roots. The Clebsch—
Gordan decompositio®*? @ D@9 = pObY ¢ D20 js considered. For the fundamental
representatio®>?, the matrices are (het; is the matrix with elementéE;;) ,, = 8:»;,)

1 1
DO (H,) = diag (2, 0, —)

2
1 1 1
D) =g, o o)
D®O(Ey) = }21212
D*O(E,) = }ZEZL

Similarly

. 1 1
D@0 (Hy) = dlag(l, 5002, —1)

D(Z’O)(H)—diag(l -1 1 -2 -1 1)

2 V3 23 V3 V3 243 V3
1

D@O(Ey) = E1p+ Eaa+ - Ess

/2

1
D@O(E.) =~ Ep3+ Ess+ Esg.

V2

The second fundamental representation of(3Us conjugated to the first one, giving
DOV () = —pEO" ().

The kernel ofK (D9 @ D19 @ DOV s spanned by the single vector
(0,0,0,-1,0,0,0,1,0,1,0,0,0,0,0,0,0,—-1,0,-1,0,0,0,1,0,0,0).

Also, one vector is found fok (D9 ® DAY @ DX0) These vectors give a standard
basis of decomposition:

1 1 1
7(0’ _17 05 17 Oa 07 Oa 09 0)5 7(07 Oa 17 05 07 Oa _17 Oa 0)5 7(07 05 07 Oa 07 _15 07 15 0)5
{ﬁ V2 V2

1

(1.0,0.0.0,0.0.0,0), —(0.1.0,1.0.0,0.0,0)
1

V2
1

V2

As for the Casimir operators, the matrix functiofi4 (D, ) or BY (D, t) are easily found.
Expanding them, the matricey/” (D) andC{" (D) are found. For example, the eigenvalues
of CP (D) are 2 (three times) and (six times), and forcy*" (D) are —{ (three times)
and — % (6 times), which are the values of the operatai$” (DY), c>?(D?9),

cPP(DOY), and ¢ (D?Y), respectively. Indeed, the calculation of the generating

(0? 0’ 1’ 07 O’ 07 1’ 0? 0)’ (0’ 07 O’ 07 1’ 0? 0’ 0’ 0)’

(0,0,0,0,0,1,0,1,0), (0,0,0,0,0,0,0,0, 1)}. (21)
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functions (20) gives (foD irreducible, the scalar matrices must be obtained):

1 1 e~ 1y 2\*
BOY(DOY 1) =2 +— = <2 () + (—) ) r*
( ) 1-3t 14 3% ; 3 3

5 1 4 1 & (5(2) 4/ 5Y
BOY(DRO 4y =~ = = e [ =2 ).
P00 =31 2 " 3105~ 2(5(3) T3l

The coefficients withv? and #® coincide with the mentioned eigenvalues. Of course, the
corresponding eigenspaces are the irreducible subspaces. Note that from the expansion of

BOD (DO 4 8 1 1 1

+7
31—%[ 31+53‘t

it follows that C)>P(D®9) = c>P(DOD), and therefore, the operatorsy” cannot
distinguish between these representations (manifesting that the rank of su(3) is 2).

5. Concluding remarks

The modified group projector technique for decomposable representations of the Lie groups
is developed in full analogy to the method established for the finite groups. The main object,
the subspaces™ of the fixed points of the representatibiG) = D(G) @ D™ (G), is
characterized either as the range of the group proje&tdr), or as the kernel of the single
guadratic Casimir operatdt (I'), which naturally emerges at the level of the Lie algebra of

G. As for the semisimple groups, the usual Casimir operator technique, aimed to determine
the subspacé{* of the multiple irreducible representatidd®, is rederived through the
expansion of the operator functigf®” (D, ¢), the partial trace of5(T", t) over the second
space. These functions in the limit— —oc give the group projector&® (D) on H®™
andG(I") on FW. Also, quite a general formula for the generating functions of the Casimir
operators is established.

When the groupG is a weak product of its subgroup&, = G1G,, thenG(I') =
G1(INGL(T), where the subgroup projectors;(I") and Go(I') mutually commute [1].

The Lie algebra ofG is the sum of the corresponding subalgebras, and (13) is factorized
to the terms with their Casimir operatofs;(I') and Ko(I'). They satisfy N (K (")) =

N (K1(I')) NN (K»(I')), which means that instead &f(I") or K1(I'") + K»(I"), both K(I")

and K»(I") can be used; the systeky (I')|x) = 0 (( = 1, 2) should be considered, giving

the corresponding subgroup projectors and the subspaces in the spB¢é€f This has

been performed in the example of the Lorentz group. Together with the known fact that a
pair of opposite roots and an element from Cartan’s subalgebra form@eCslalgebra,

this result can serve as an easy explanation for extensive usage of ‘spins’ in physics.

The technique offers a criterion of the irreducibility of the representatid(@).
Obviously, the representation is irreducible if and only if the range56D ® D'), i.e.

F =N(K(D®D"), is a one-dimensional subspace spanned by the vctet 21.2‘1 [i){i]
({li)} is a basis in the space @&i(G)). More clearly, using the operators from HGH, H)
instead of the Dirac notation, this means tiaatx)) = /.

Treating the Lie and finite groups in the uniform way, this technique is in some
sense complementary to some other results in such a direction [8,9]. As or the computer
implementations of the group theoretical results in physics, [10], this approach is quite
suitable, since it involves only the basis of the algebra. For example, the Clebsch—Gordan
coefficients are already contained in the vector spanning the subsféte Indeed, if
for the finite-dimensional irreducible representatiad$’ (G) and D® (G) their product
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D(G) = DY (G) ® D'®(G) contains the irreducible compone*) (G) only once (the
conditions which must be assumed in the formulation of the problem), then (7) reads

le| Bl ul
Sy 3y c ( >|aa>®|ﬂb)®<u’ml

|'“|a 1 =1 =1

and the Clebsch—-Gordan coefﬂueﬂts"ﬁ”) can be easily calculated as the scalar products

of |u) with the uncorrelated basjaa) ®|/3b) (uW'm|. As for the matrix representations, the

last basis is the absolute basis, and the Clebsch—Gordan coefficients are essentially already
found, being the coordinates of the normed vectoFi, multiplied by |u/|.

To compare the efficiency of the proposed and the standard procedure, note that the
algorithms for solving the systems &f linear equations and the eigenvalue problem of
the squarev-dimensional matrix require approximateN® steps, withoe = log, 7 for the
best ones, [11]. Therefore, for the semisimple Lie group, with the dimendiprand
rank r, the subspace of the irreducible compon®’ (G) of the representatio®(G) is
obtained, according to the proposed algorithm by (12), witlhif{| D||x])* + g(|D||,u|)2
steps. Within the standard prescription, (18), all of th€asimir operators are derived
within Z’“(k — DI|LI*(D|* + |u|*) steps; for each of them, the eigenvalue problem
requires furthel D|* steps. Thus, the proposed procedure is more efficient by the factor

(L4 (DI/Ih*) Y5k — DL
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