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Abstract. Instead of the usval procedure involving the family of group operators, only the
projector of the identity representation is used to obtain the symmetry-adapted basis. For the
product groups, this projector is factorized to the subgroups. So, the whole procedure is reduced
to the eigenvalue problem for the operators representing the generators. Avoiding sumumation
aver the group, the method is suitable for computer impiementations even for infinite groups.
Some applications are discussed.

1. Introduction

One of the most important group-theoretical concepts in physics is the standard (or
syminetry-adapted) basis (Elliot and Dawber 1979 section 5.3, Jansen and Boon 1967 ch II)
which enables us to simplify and sometimes completely solve the eigenproblem of operators
commuting with a unitary representation of the symmetry group. Furthermore, such bases
are unavoidable when selection rules are sought (Wigner 1959 section 6.3, Messiah 1970
appendix D} and, more generally, they provide the setup for the Wigner—Eckart theorem.
To find these bases, group operators are essential.

Let D{G) be areducible unitary representation in the space H. The notion of reducibility
refers to complex spaces until otherwise specified (Wigner 1959 section 3, Jansen and Boon
1967 ch 2). The frequencies a, of the irreducible components D% (G) can be found by
using the characters: a, = (1/|GD X, x¥*(@)x(g). Then, D(G) is decomposed into
irreducible components in the form D(G) = &},_;a, D%(G) revealing the decomposition
of H into the irreducible invariant subspaces: H = @)_, @2:;1 HE4w . By choosing an
orthonormal sub-basis {|ut,m)im = 1,...,d,} (d, is the dimension of D®}G)) in each
of these subspaces, the standard basis in M is obtained. The action of the operators D(G)
in this basis is represented by

dy
D(g)lut,m) =y DY} (g)|utym')
mi=1

i.e. by block-diagonal matrices with irreducible representations within the blocks.
To obtain the standard basis when the matrices D[-(Jﬁ”(g) of the irreducible representations
are given, the family of group operators (Jansen and Boon 1967 section HI.2.6.)
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P(D, G)Y¥ (4, /1G]) ¥ D*(2)D(g) has to be calculated. The orthogonality relations

ij
imply that PY*(D, G)B(D, G) = PYHD, GYouws,, and PY(D,G) = P (D, G);
thus, P;.E.“’(D,G) are the projectors. The algorithm to obtain the standard basis
becomes: for each u the projector Pl{,“)(D,G) is found, with a basis in the (a,-
dimensional) range of this projector, say {|ut,1)[t, = 1,...,a,}); finally, the vectors

Hutamy & P(D, G)lut, 1)lm = 1,...,d,} form the standard sub-basis. In what follows,
the group projector P,(f}(D, G) for the identity representation J(G) (I(g) = 1) will be
denoted by G{D).

This general procedure may appear inconvenient to apply to some specific situations.
Since group operators do not involve the whole irreducible representation but only a single
matrix element, algebraic operations with them are only related to the structure of the
group through the orthogonality relations. Furthermore, for groups with many elements, the
summation can be complicated while for infinite groups the direct computer implementation
of this technique seems impossible, e.g. the line (Milo3evi¢ and Damnjanovié 1993) and
space groups (Altmann 1977) in polymer and crystal physics are infinite.

The aim of this paper is to develop a method to avoid some of the mentioned difficulties.
This method should be applicable whenever the described standard one is, i.e. for unitary
representations of finite and discrete groups. In the next section, the theorems enabling
us to reduce the construction of any group operator to the group projecior of the identity
representation are proved. Since it does not single out any matrix element, this projector
manifestly reflects the group structure (section 3), being expressible through the projectors
related to the subgroups. Using this, it is easy to substitute the summation over the group
with an eigenproblem (section 4). Finally, besides some remarks on the applicability of the
method, an example is given.

2, Projections in the product space

To begin with, the necessary group-theoretical results will be briefly developed. Let Dy ({G)
and D,(() denote two unitary representations of G in the spaces H; and H, (d, and dp
being their dimensions). The corresponding decompositions into irreducible components
are D;(G) = EBuaLDU‘)(G) (i = 1,2). In the direct product of these representations
Di{(G) & D3(G), defined in the space H; ® Ha, the identity representation I{G) appears
a; = (1/1G)) Zg x1(8)x2(g) times (in fact, this is the intertwining number for Dy(G)
and D§(G)). Since x;(g) = T, @', x*“(g), the orthogonality of the irreducible characters
gives ga; = Z“ a}ﬂﬁ' (here, D'*)(G) denotes the complex conjugated representation of
D®(G)). Note that a; is the dimension of the subspace of the identity representation, i.e. of
the range R of the group projector G{D; @ D1} = (1/|G|) Zg Di(g) @ Da(g). Obviously,
G(D"™ @ D) = PYND,G) if DI(G) = DW(G) is a one-dimensional (irreducible)
representation.

Let {|i;1)]i = 1,...,di} and {|&;}|j = 1,..., d»} be the orthonormal bases in H; and
Hz, respectively. Any vector [x) from H; @ Hj, written as Jx) = Ei.f a;;li; 1) @ |b),

uniquely defines d; vectors in H; through the partial scalar products: |i; Z)d_-e-f(i ; Hx) =
Zj o1, f = 1,...,d). The obtained couples |i; 1} and |{; 2) determine |x} in the form

|x) = Zf;, [£; 1} @ [i; 2). Note that the vectors |i; 2) may be zero or linearly dependent.
The main theorem can now be proposed.
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Theorem I. Let the vectors of the orthonormal basis {}i; 1}[i = I, ..., d1}in H; transform
according to Dy(g)li; 1} = X, Dyj(g)lis 1) and let |x) = Z,_l fi; 1Y @ |i;2) be from
R. Then the action of the operators D,(g) on the vectors |i;2) is Dy(g)li;2) =
21_1 11,(3)'] 2).

Since Dy (g)® D2 (g){x) = |x), the proof consists of the following sequence of equalities:
Dy(g)li;2) = Da(g)(is lx) = Da()i; 1H(D1(g™) ® Dz(g")zk 161 ® k:2) =
Do) 11 o Dije(g™is 1y @ (Da(g™Oki 20) = T8, DY (@)1 2).

Theorem 1 offers an algorithm for the derivation of the standard basis. It will be
described with the help of the following theorem.

Theorem 2. Let {|uutym; 1)} and {Jusr2m; 2)} be the standard bases for the representations
D {(G) and D,(G) in H; and H,. Then an orthonormal basis in R is

o
[It )CE\/_ZIu*tI.m)@J[,ut md | t:t.zl,....a;. rﬁ:l,...,ai}.
;.:.

m=

To prove this, it is sufficient to note that there are exactly Z,u a}L.afL of these vectors,
which is also the dimension of R, and that all of them are invariant under Dy{g) & D2(g).
They are orthonormal since so are components in H; and H,.

The standard basis for the reducible representation D2(G) = D(G) can be found as
follows. Let DY (G) be one of its irreducible components and {|u*m)|m =1, ...,d,} be
the standard basis for the irreducible matrix representation D1(G) = D™'(G). First, the
projector G(D®Y @ D} is to be found. In its a,-dimensional range, any orthonormal basis
{leta)lt, =1, ..., a,} (t). = 1 is superfluous, while £, = t2) can be chosen as the basis of
theorem 2. According to theorem 1, the partial scalar products |utum) = {u*m | ut,) are
the standard vectors. To find the whole standard basis, the procedure has to be worked out
for each irreducible component of D(G). Thus, the procedure is reduced to the projectors
G(D® & D) only. In fact, since P,.frf‘)(D. G) = {Wi|G(D™" & D)|u*j} (partial scalar
product), G(D*" ® D) contains the same information as the whole set of the group operators
Pg‘) (D, G). In this sense, the proposed procedure appears as a modification to the usual
one; its advantages will stem from the fact that the projector G(D) reflects the structure of
G as will be discussed in the following.

3. Subgroups and their products

The definition of the group projector G(D) can be easily generalized to any subset ¥ of G:
YD) = (1/1¥) Zgﬂ D(g). Although these operators are not generally projectors, their
properties enable us to reduce the calculation of G{D) to some relevant subsets. For further
analysis it should be recalled that the group G is the product of its subgroups A and K,
G = HK, if each element g of G is a product g = kk of the e¢lements % from H and &
from K (Jansen and Boon 1967 section 1.6). The factors are not unique unless G is the
weak direct product of H and K, i.e. unless the intersection subgroup L = H N K contains
the identity element only: for any ! € L the elements &' = k™! € H and k' = Ik also
give g = 'k, More generally, for any subgroup H of the group G, the lefi transversal
Z = {zp,...,zz-1} (I1Z] = |G|/1H]) can be found: G =U,z, H. If Z is the closure of Z,
i.e. the minimal subgroup of G containing Z then G is the product G = ZH = HZ. This
is the weak direct product if, and only if, Z = Z, i.e. when Z itself is a subgroup.

Using these preliminary considerations, one can prove the following theorem.
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Theorem 3. Let D(G) be a unitary representation of the group G.

@ If Y1 & (y-1|y € ¥} then (Y~1)(D) = YH(D).

(it) For a closed subset ¥ (i.e. YY =Y) in G, ¥Y(D) is idempotent, Y2(D) = ¥ (D).

(iif) f H and K are subgroups of G, then (HK)Y D) = H(D)K(D) and this is
the projector if #K = KH is also a subgroup; in particular, when G is the product
of its subgroups H and X, then G(D) is factorized into subgroup projectors: G(D) =
H(DYK (D).

(iv) If H is a subgroup of G with the left transversal Z then G(D) = Z(D)YH(D) =
Z(D)H(D).

The first two statements follow directly from the unitarity of D(G) and the definition
of Y(D). To prove the third part—note that if A; and k; are the left and right coset
representatives of L in H and K, respectively, ie. H = Ui L and K = U;Lk;—all the
pairs £, k such that g = hk (for given g € HK) belong to the same cosets of L in H
and K, respectively. Indeed, if g = hk = A’k with h = i, h = hplp, k = lkkj and
k' = lpkp, it follows from hk = W'k’ that Vil = (Iylkr)k’k and i’ =i, j = j and
Ialy = lplp = 1. Once the transversals {&; } and {&;} are chosan, the elements of HK are
uniquely factorized in the form g = h;lk;, I € L = HN K. So, the orders of the mentioned
subsets are related by |G| = |H[|X| /]L| The product of the subgroup projectors, when
h = kil and k = I'k; are substituted, becomes

H(D)K (D) = }:D(h )ZD(H)ZD(k ) = (HK)(D).

I
TR & D0 = TR 2
HK is a subgroup if, and only if, HK = KH which implies that HF(D) and K(D)
commute and ensures that (7 X)(D) is again a projector, The last part is obtained when in
G(D) = 1/(1Z]|H)) 3, , D{(z,) D(k) the summation over H is performed giving the sum
of the transversal representatives multiplied by H (D).

Applied to the results of the preceding sections, this theorem enables us to reduce
the group-projector technique to some subgroup and its transversal: for any irreducible
component D) (G) of D(G) the representation D¥*(G) ® D(G) is constructed and the
relevant group projector factorized: G(DW* @ D) = Z(D¥"M @ DYH(DW* @ D). Both
factors are projectors, particularly for the product groups. Afterwards, the determination of
the standard basis is prescribed by theorem 2.

4. Projectors of the cyclic groups

All the operators of the representation D(G) of a cyclic group G with generator g are
powers of D{g). Hence, there exists a unitary operator U/ such that UD(g)/~! is the
diagonal matrix with eigenvalues e (s = 1,...,d; d is the dimension of D(G)) on
the diagonal. The corresponding eigenspaces are the irreducible invariant subspaces for
D(G) and the irreducible subrepresentations (always one dimensional) are generated by the
eigenvalues. g‘ is represented by a phase factor D®({g’) = e« particularly within an
irreducible representation.

Therefore, the group projector (D, G) = G(D™* @ D) takes the form

1 . 1 .
G(D™* ® D) = U~ dia (— el e""""")’)U
¢ ) =S i1 2
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The non-vanishing sums are for k&, = k, being equal to 1. In other words, R is the
eigenspace of D{g) for the eigenvalue D% (g) and instead of the summation over the
group, only the eigenprojector of D™*(g) ® D(g) for the eigenvalue 1 is to be calculated.
This also remains true for the infinite cyclic groups when direct summation is not possible
and this fact can be exploited in the related computational methods.

The generality of the presented considerations becomes clear when it is realized that,
besides the finite groups, most of the discrete groups applied in physics can be factorized
as the product of the cycles of their generators. For example, all the erystallographic point
groups are products of cyclic groups (Altmann 1977, p 268) and the line groups are of the
form L = Z P where Z is a cyclic infinite group and P is one of the axial point groups which
are themselves products of the cyclic groups (Damnjanovié 1981). In all these cases the
group projectors can be found by solving the eigenproblems for the generators. As for the
space groups, the translational subgroup is the direct product of three infinite cyclic groups
{the subgroup projector is to be within three eigenvalue problems) while the transversal is
finite, making the last part of theorem 3 applicable. In addition, it should be mentioned that
when H is the invariant subgroup, since it is the translational subgroup, Z(D) commutes
with H(D).

5. Discussion

The group-operator technique is reduced to the group projectors G(D®* ® D) of the
identity representation. It appears that the vectors in the range of this projector, i.e. the
fixed points of the operators of D™*(G) ® D(G) are those coupling the corresponding
vectors of the standard bases for D'*")(G) and D(G). This provides an algorithm for
constructing the standard basis of D(G): for each imeducible subrepresentation D®}(G),
the projector G(D%*") ® D) should be found together with an orthonormal basis in its range.
For each vector of this basis, partial scalar products with the known standard basis for
D®(G) (usually the absolute basis) give the standard basis for D(G). Note that the order
in the direct product is unimportant; the whole method can be worked out with the choice
G(D @ D),

In this form, the group-projector technique does not involve any isolated matrix elements
but only the whole matrices of the related representations. Essentially, this has been
exploited to show that in the most general case of the group factorizing into subgroups
G = HiH, ... (with no restriction on their intersection) and their factor groups, the projector
G(D"* ® D) is the product of the corresponding projectors H;(D** ® D} of subduced
(or restricted) representations to the subgroups. Moreover, for the groups factorizable in
this sense into the cycles of the generators, it turns out that the whole problem is equivalent
to the determination of the eigenspaces for the eigenvalue 1 for the operators representing
generators of G in D™*(G) ® D(G), even in the case of infinite discrete groups. In this
sense the proposed scheme generalizes the subgroup method used in the solid-state physics.

The structural conditions required in the theorems are weak enough such that the results
refer to all the discrete groups relevant in physics. This offers the opportunity to apply
the technigue in the calculations with obvious advantage when infinite groups are involved.
Due to the relation ¢, = Tr G(D™' ® D), it may be preferable to calculate even the
frequencies of the irreducible representations by this technique. It should be mentioned that
these results have already been implemented in the computer program POLSym, employing
the line groups in polymer physics (MiloSevié and Damnjanovié 1992).

The same concept can obviously be extended to compact factorizable Lie groups in
which the usual group-projector method is based on the bi-invariant measure. While the
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structural considerations remain the same, the appropriate elements of the Lie algebra and
the null-spaces of the operators representing them should be used instead of the generators
of the discrete groups and the eigenspaces for the eigenvalue 1. The connection of this
approach with Cartan’s seems to be an interesting question but far beyond the scope of this
paper,

Some other related problems should be mentioned in this context. The first of these is
a prescription for calculating the Clebsch—Gordan coefficients. If, in the direct product of
two imeducible representations D®(G) and D™ (G), the irreducible component D™ (G)
occurs once then the Clebsch—Gordan coefficients are the scalar products {umva | pvAl)
of the standard basis [uvAl} (in the product space) with the vectors |pmun) = [um) ® |va)
of the product of the standard bases (in the factor spaces). In view of section 2, the range
of the projector G(D™ @ D™ @ D™) is one dimensional and for a chosen normalized
vector |pevA} the standard basis is |pvAl) = (A*1 | pvd} (partial scalar product), Therefore,
the Clebsch~Gordan coefficients can be calculated as {umvn | pvdl) = {(umvn|{A¥[uvd).
Assuming that all the bases involved (|um), |vn) and |A*))} are absolute, it turns out that
the Clebsch—Gordan coefficients are just the coordinates of [pvi).

It is well known that there is a standard eigenbasis of the Hermitian operator H
commuting with the representation D(G). In fact, the group operators commute with H
also and the ranges of the projectors P,.(,.'”)(D, G) are invariant for H. This enables us to
solve the eigenvalue problems separately in the ranges of Pf,“) (D, G) for each p and to
reveal the other symmetry-adapted eigenvectors through the use of the group operators. In
the proposed scheme, the role of H is taken by the operator / @ A commuting with the
representation D™ (G) ® D(G). The subspace R is invariant for this operator and by
solving the eigenproblems in these subspaces (for each 1) we obtain the basis in R. This is
the basis [,u.ltﬁ) used in theorem 2; it is easy to verify that the standard basis of the original
space derived in the theorem is an eigenbasis of H.

At the end of the paper the concepts introduced are illustrated by an example concerning
the line groups (MiloSevié and Damnjanovié 1993). The group L = L(2rn).mc is the
weak direct product L = ZP of the infinite cyclic group of the screw axis Z = (2m); =
{(C241$)f]t = 0, 1...} and the point group P = Cpy = {03y Cijj =0,1;5=0,...,n—1}
The Clebsch—Gordan series of the square of the irreducible two-dimensional representation
E = EpmformsLis E2 = E'+ A+ B with E' = 3 Ezp, 2, A = Ao and B = % Bo
(Damnjanovié et ol 1983). The scheme presented in the paper will be applied to find the
Clebsch—Gordan coefficients. The factorized projector L(D") = Z(D)P(D’) is used with
D' being D, = E" @ E*, D!, = A* ® E? and D} = B*® E®. While the subgroup
projector of C,, is found by the standard technique, the other factor is constructed as the
eigenprojector for the eigenvalue 1 of the operator D’(Cz,,]%), thus avoiding the infinite
summation,

The representative matrices are (o = 2 /n)

E((CZHI%):UJ C::) - eik:/l diag(cimmfz, e—imtaﬂ)Mif dia.g(eim-m1 e—ims«)
AUChILYaiC =82 BUCHILYoiCh = (1P
and
EX(Ca 1) 0] CS) = ¥ diag(e™, 1, 1, e "™*) M/ diag(e?™*, 1, 1, e~5™%)
where M, is the n-dimensional off-diagonal matrix
0 ... 1
M,=]: )
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The representations D’ of the subgroup C,,,, can be found by substituting t = 0
Dy (ciCl) = M{ diag(1, e~ g %imse g=dimsar gdimsa o dimsa cdimsr

D (o] Cs) = EL _ (a]C3) and Dig(o]Cy) = (1), EL _ (eiCD).
The subgroup projectors P(D"} = (1/2n) Z:’;& Z:;:o D (O'J C%) are

1 0 0 1
o)
0
0
0
0
0
1

P(Dp) =4

OO~ — OO0
Loe R o v B - Y e B o B e B o

—_ OO0 0000

[oon e Y o Y e e Y o Y s

P(Dy) =1 and  P(Dp) =1

=M=l OO~ -~ OO

o oo
—
|
—

O—=— o o000 OoOOO
|
—_
—_

=R ==

Q= O = o Y . B o Y o T - Y o T e

CcCOoOCO

As for the generator (Cz,|3), the representative matrices are
Dl (Cald) = diag(l, g™, e7ime g72ime glima gima oima p)

Consequently, the projectors Z(D'), being the eigenprojectors of these matrices are
Z(D}) = diag(1,0,0,0,0,0,0, 1) and Z(D/)) = Z(D}) = diag(0, 1, 1, 0}.

Finally, the projectors for the whole line group L{2n),mc are the products of the
corresponding factor-projectors

1000000 Iy
000000GOO
00000000
.. «Jooocoo0oo0o0o0
LPo=3(0 0000000
00000000
000CG00O0GO0 O
\1 000000 1/

while L{D,) and L(D}) are equal to those found for the subgroup C,,. The eigenvectors
in the ranges of these projectors are; |EEE') = (1,0,0,0,0,0,0, )7 for D}, |[EEA) =
(/V2)(0,1, 1,07 for DY, and {EEB) = (1/+/2%®, 1, —1,0)7 for DY,

It remains to find the standard basis and the Clebsch-Gordan coefficients. Denoting
the absolute bases in the irreducible representative spaces by {jE1), |E2})}, {|E'L), |E'2}},
{|A1}}, {|B1)}}, the coefficients are the coordinates of the found vectors [EEE’}, |[EEA)
and |EEB). The non-vanishing ones are

(E1E1| EEE'l) = {E2E2 | EEE'2) =1
(E1E2 | EEAL) = (E2E1 | EEAL) = 1/3/2
(E1E2 | EEB1) = —{E2E1| EEB1) = 1/+/2.
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