J. Phys. A: Math. Ger83(2000) 2223-2229. Printed in the UK PIl: S0305-4470(00)05329-4

Group projector generalization of the Dirac—Heisenberg
model

M Damnjanove
Faculty of Physics, PO Box 368, 11001 Beograd, Serbia, Yugoslavia

E-mail: yqoq@afrodita.rcub.bg.ac.yu
Received 21 June 1999, in final form 29 November 1999

Abstract. The general form of the operators commuting with the ground representation

(appearing in many physical problems within the single-particle approximation) of the group

is found. With the help of the modified group projector technique, this result is applied to a

system of identical particles with spin-independent interaction, to derive the Dirac—Heisenberg
Hamiltonian and its effective space for arbitrary orbital occupation numbers and arbitrary spin.
This gives transparent insight into the physical contents of this Hamiltonian, showing that formal
generalizations with spin greater thérinvolve non-trivial additional physical assumptions.

1. Introduction

Considering systems of identical electrons interacting by Coulomb forces only, Dirac found [1]
that the effective Hamiltonian can be expressed in the spin space@ryU+> ", _; Jusk- s/,

wheres; is a vector of the Pauli matrices related to the spin inithesite. The aim of this

paper is to present a rigorous derivation of the Dirac—Heisenberg Hamiltonian for any spin,
within the framework of the original physical assumptions. This means that an arbitrary spin-
independent interaction of the identical particles is considered. Then, due to the perturbative
approach, the Hamiltonian is approximately reduced in the subspaces of the orbital state space
spanned by the vectors with the same occupation number. Such a subspace carries a special
induced type representation (ground representation) of the permutational group, commuting
with the reduced Hamiltonian. The general form of the operator commuting with the ground
representation is derived in section 2 and the result is applied to the considered Hamiltonian
in section 3, yielding its form in the orbital many-particle factor space. Finally, the required
form of the Hamiltonian is obtained in section 4, by a restriction to the relevant (symmetrized
or antisymmetrized) subspace of the total space. This step is based on the modified group
projector technique for the induced representations.

The result generalizes the original derivation with respect to spin and occupation
numbers. Nevertheless, the physical framework remains the same, in contrast to the
formal generalizations appearing in various theories of magnetic materials [2], when in the
Dirac—Heisenberg Hamiltonian only the values of spin and the interaction coefficients are
appropriately modelled.

The rest of the introduction gives a necessary reminder on the modified group projector
technique. LeD(G) be the representation of the groGfin the spacé,, decomposing into
the irreducible componen3”(G) asD(G) = &/,_,a, D" (G) (a, is the frequency number
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of DW(@G)). The symmetry-adapted [3, 4] (or standard) bagis,m)|u = 1,...,r;t, =
1,...,a,;;m =1,...,|ul} (In| denotes the dimension &1 (G)) in H is defined by the
following condition:

||
D(g)lutum) =y Dyh) (&) |ut,m"). €N
m'=1

To find this basis [5], the auxiliary representatibt(G) def D(G) ® DW*(@) in the space

Hp ® H™" is constructed for each irreducible compon®W (G) (with a,, > 0) of D(G).
Here, DW*(@) is the dual representation &) (G); in fact, it is the conjugated one, since

the finite permutational groups and their unitary representations are considered. The range of

the modified projecto6 (I'*) def 1/1G) Zg '*(G) is the @,-dimensional) subspacg* of

the fixed points for the representatibtt(G). For the arbitrary basiguzs,)|lu =1, ..., a,}
of F*, the subbasi$|ur,m)im = 1,..., |u|} is found by the partial scalar product with the
standard vectorgum) of the irreducible representation

\utm) = (um|pt,). )

If G is the symmetry group of the Hamiltonidh (thus [D(g), H] = 0 for eachg € G), then
taking for |ut,) an eigenbasis off ® I, (1, is the identity in*"), equation (2) gives the
symmetry-adapted eigenbasis fér H |ut,m) = E,;, |jut,m).

The representations involved in this paper are of the induced type. Precisdiy,Het
a subgroup ofz with the transversa¥ = {z,|t = 0, ..., |Z| — 1} (zo is the identity of the
group,|Z| = |G|/|K]). ThenD(G) = A(G) ® d(G), whereA(G) = A'(K 1 G) is an
induced representation addG) is some other representation@f In this case the modified
projectors can be reduced [6] to the subgroup modified projécter*) for the representation
YHE) = AN(K)®d(G | K)® DW*(G | K)inHyu =Hy @ Hg @ HW:

G(I*) = BHE®® K (y")}B"". 3)
Here,B* £ (1/VIZ) Y, E® 1, ®d(z)® D™’ (z,) is partial isometry and™® = |z, (zo|
are|Z|-dimensional square matrices with only one non-vanishing eleit®@fj,o = 1. It
appears that the range®f(y*) (the subspace iK, ) is the effective space, while the effective
Hamiltonian isH* = B*'(H ® 1,)B*K (y*). Indeed, the symmetry-adapted eigensubbasis
|ut,m) corresponding to the irreducible representatioft’ (G) is found by (2) with the
vectorsjut,) = B+ |ut,.)°, wherelut, ) are the eigenvectors éf/ from the range ok (y#):
HM“‘LI;/.)O = Ewu“l'tu)o-

2. Invariants of ground representations

If K is the subgroup in the finite grou@, its left transversalz gives the coset partition
G = ),z K. Therefore, to each elemegte G there corresponds one elemgnof Z:
there are uniquely defined € K andz, € Z, such thatg = z,k, andz, is denoted byg.
Together with this coset decomposition, the subgrBugives the double-coset decomposition
[7-9] of G over K: G = ), Kz, K. Each double coset decomposes onto one or more
cosetsKz, K =), z:. K. Thus, the double coset representatives can be chosen among the
elements of the transversal The double-coset decomposition enables one to define for each
g € G its double-coset representativeby ¢ = kz,k’ (k, k' € K), denoted also &g.

Furthermore, eacly € G, andz, € Z define uniquelyz; € Z andk € K, such
that gz,, = zyk. Obviously, with the above notational conventian,= gz,,, and the left
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(permutational) action oz over Z becomesg : z,, — gz,. This action is faithfully
represented by the linear operators of the left ground representat@n = 1(K 1 G)
in the|Z|-dimensional vector spacg; each element of,, € Z is mapped to the basis vector

|zm). The operators ofs are defined by.(g)|z,,) def |8Zm), .. L(g) = >, 18Zm)(zml|. The
homomorphism conditioi(gg’) = L(g)L(g’) is easily checked.
Also, the right multiplicationz,,g = z;k introduces the ‘right’ operator®R(g):

(zm|R(g) gef (zmgl, Or R(g) = >, lzm)(zmgl. These operators form an antirepresentation
(R(g)R(g') = R(g'g)) ifand only if K is an invariant subgroup. Sineg,.k = z;z., it turns

out thatR(z,,k) = R(z,,) for eachk € K, i.e. that the mapping — R(g) is a function over
the cosets oK.

All the operators.(g) and R(g) are in the basi$|z,,)} given by the real matrices, with
elements O or 1. In particular, for the unitary (in fact orthogonal) matriogs this yields
LT =Lg™.

Now, the condition that the operatot acting in Z is invariant of G means that
[A, L(g)] = 0 for eachg in G. Such an operator has a very special form.

Theorem 1. Any invariant operatorA in Z is of the formA = deaoz@)R(g), whereu(g)
is a function over double cosets Af in G (i.e. these constants can be chosen independently,
one for each double coset).

The proof consists of two parts. At first, the commutation with the operatdgrs,)
representing the transversal is used: becausé(9f)|zo) = |Zmzo) = l|zm), One has
A =), (m|Aln)|m)(n| = > n(zolLT (z) Aln)Im)(n|. Sincez, is also an element of
G, it commutes withA, and

A= 2ol Alze)zs LT @)z lzm) (2l = D A% 2m) (ZnZs]
giving finally A = Y~ A¥R(z,). Consequently, the matrix of the invariastis completely
determined by its first row. Secondly, the subgroup elements are employed; for each double-
coset representative and each elemeite K it holds

A% = (z0]Alz:) = (20l L(K)Alz:) = (20l AL(K)|2:) = (2ol Alkz;).

Whenk goes overK, all the elementgz, go over the coset representatives of the whole
double coset of;, meaning that the matrix element$® and A% must be the same f,

and z, are from the same double coset. Together with the previous conclusion this gives
A=Y, A%Y R(z.). Tocomplete the proof, it remains to recall that the right operators
are the same for the elements of the same coset.

From theorem 1 itimmediately follows that the number of linearly independent invariants
is equal to the number of double cosetskf Precisely, to each double coset represented
by z;, there corresponds the invariant = >, x. , R(g). In the special case, when
K = {e}, the trivial subgroup containing the identity only, the ground representation is the
regular representation of the group; since in this case each element of the group is itself one
coset and one double coset, there are exa€tlyindependent invariants, each of them being
one of the operatorB(g) (in this caseR (g 1) form the right regular representation@f being
equivalent to the left on&(G)), and all the left operators commute with all the right ones.

3. Generalized Dirac—Heisenberg Hamiltonian

Let H = H, ® H, be the quantum mechanical state space of some particle, iiere
and H, are the orbital and the spin factor spaces. Then, for the system pérticles
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the tensor powerg{Y o H, ® - ® H, (N times) andHY are constructed, and in
the space’ = HY ® HY the symmetric (bosons) or antisymmetric (fermions) part are

considered as the state space of the total systeffi)|f = 1, ..., |o|} is a basis ir{,, then
{lis, ..., 0n) def lir) - lin)liz, ..., iv = 1,..., o]} is @ basis inHY. Each of this vectors
defines the occupation number vecioe (n1, . . ., n),|), with the component; showing the

number of particles in the stats.
Each permutatiomr of the symmetric grougsy, is represented by the operatdgr),

defined by the actiom\ () (i1, ..., iy) def liz-11, ..., Iz-1y). This action does not change

the occupation number of the basis vectors, and the orbit of the action gives the set of the
basis vectors with the same occupation numbers. Thus, each orbit is uniquely defined by
the occupation number and spans the subspgfenvariant for the representatiof(Sy).
Consequently, ir{¥ A(Sy) is reduced to the representatian (Sy). Its dimension is equal

to the order of the orbit with the occupation number|A,, | = N!/(n1!---n,!), since the
stabilizer of the vector with the occupation numbgs Sy, = S, ®---®S,,,. Note that, being
induced from the trivial representation of the stabilize;(Sy) = 1(S¥ 1 Sy), An(Sy)isa
ground representation [7].

To summarize, the spaé¢ is decomposed into the orthogonal s&tfi = @, HY. In
each of these subspaces acts the ground representgtichy ), and the partial reduction of
the representation (Sy) is obtained:A(Sy) = ®,A»(Sy).

Let H be a spin-independent Hamiltonian of the systenivoidentical particles. It is
written in the formH = Hi + H,, whereH; = Z_f’:l hy is the non-interacting part. Here,

h; is a one-particle Hamiltonian, i.e. the operator in the spdgewhile H, = ) _, Vi,
describes two-particle interaction. SinBecommutes with the operators(Sy), all 1, must

be equivalent: the full form of; is the tensor product of the identity operators in all the spaces
exceptinthath one, where the corresponding factor is the same, for exampialogously,

all the operatord/;, are the same except that their non-trivial action is reduced to the different
pair of spaces.

If the basis{|i)} is chosen as the eigenbasis/ofwith the eigenvalues;), then the
vectors of the subspade are the eigenvectors df; for the eigenvaluez,, = Zf.’zl n;€;.
Although this subspace need not be invariantfr the approximatiorl, ~ ®,, Ho,, with
H,, = P,HyP, (P, stands for the projector onta’) enables the perturbative approach,
involving the eigenproblems of the operatdfs,. SinceH, is invariant ofSy in the whole
spacel, the operatorgi,, are alsaSy-invariants, i.e. they commute with the corresponding
representatiom\,,(Sy). Recalling that this is the ground representation, theorem 1 gives the
most general form

Hap =Y a(T)Rn(r). 4)

TeSy

Here, R, (;r) are the right operators af,, (;r), while the coefficientsr are equal for all the
permutations from the same double cosespf

Until now, only the orbital spac&/) has been considered, since the Hamiltonian acts
trivially in the spin factors. Nevertheless, the particles are identical, and either the symmetrized
or the antisymmetrized part of the total spa¢® is to be considered. The orbital occupation
number decomposition yields the decomposition of the total spdte= @, HY @ HY. Using
anarbitrary basifo)|o = 1, ..., 2s+1} inthe single-particle spin spagg, the representation
d(Sy)inHY is defined analogously t8(Sy) inHY: d(r)|o1, ..., on) O 1 0r11, s i),
and in the total space the permutatiois represented by the operat®(r) ®d (). Obviously
the subspace’) ® HY are invariant for the action of ® d, and the modified group projector
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of the irreducible representatidd® (Sy),

1
SN(A®d® D) =0} A(m) @ d(m) ® D (1) = BnSy(An @ d ® DV (5)

treats each of these subspaces independently. Therefore, in each st¥pade! there is

the subspacg(l, corresponding to the representatidf” (Sy). It is spanned by the standard
subbasig|ut,m)}, obtained by (2) from any basf#n; ut,)} of the rangeF* of the projector

Sx(A, ® d ® D™*); obviously, F* is the intersection okY ® HY ® H*" and the range

F* of the projector (5). In particular, taking the identity and the alternating representations,
D® () = (+)* (as usualyr in the exponent denotes the parity of for D™ (Sy), the
projector (5) becomes the symmetrizer and antisymmetrizer, respectively; in these cases of
one-dimensional irreducible representatigfsis itself the subspack;,.

4. Restriction to the relevant subspace

Since the involved representations are of the induced type, the modified group projector
technique isomorphically relates by equation (3) the subsgcef HY @ HY ® HW'
to the effective subspace, being the range of the subgroup projaatet) in HY @ H®W"
(sinceA’(K) is a trivial representation). Of course, the effective Hamiltorfigfy acts in the
spaceH” ® H™" with the range contained iA*. In particular, for the physically important
representation®® (Sy), the effective Hamiltoniaitl;;, acts in the spin spade?, as well as
K(@y™).

Precisely, in the considered cont&t= Sy, K = Sy, A'(K) = 1(Sy) andd(Sy) is the
permutational representation in the spin space. Thus,

1
BY — d DWw*
N T Z |20} (z0l ® d(z,) ® D" (z,)

(with the omitted number 1 standing far). Then, skipping the factoE® = |zo)(zo| (this
only gives the space of the action &%), one finds

' 1 = - *( -
Bl (Hon ® LBl = —5 3 ) ozl R(0Iz))d (2, 2p) ® DI (g, Mz,).
o p.t
The matrix element oR (r) is obviously(z,7|z,) = 8., z= (Kronecker delta). When the sum
overm = z,« is decomposed onto the sums over the transvegdair{d stabilizer £), the
equalityz,z,x = z,z, for k € S}, shows that all the terms are independent oThus

1

+

DG Tz ® D T,

q.t

Since the element 'z,z, can be written in the form,«’ (i.e. it is from the coset represented
by z,), multiplication byS%(d ® D™") gives

1|

Hy, = NI

3 a@Gd(gr) ® DY (y)
q K
and finally,

1 —
T 2 @) @ DO ). ©)

R 4

Mmoo
HZn_
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This relation is, in fact, the most general form of théh component of the permutational
invariant Hamiltonian acting it ® #Y, being trivial in7#". Note that this operator acts in
the space isomorphic to the direct product£)f and the space of the representatid’ (Sy).
Still, the range of the projectdt (y#) = [1/(n1! - - -niy D] Y, v*(x) is the effective part of
this space (its orthocomplement is from the kerneHgf). Finally, let me stress again that
the coefficientsr can be deliberately chosen only one for each double cos¥}.of

Two simplifications are physically relevant. First, as has been mentioned already, the
irreducible representatiaR ™ (Sy) is actually either the symmetric or the antisymmetric one,
giving

+ 1 T =
HE = PR Xn:(j:) a(@)d (). (7)

In these cases, the effective spacd{g“l is the subspace in the spin spacg.

The second one is that only two-particle interactions are considered, meaning that only the
permutations of at most two particles are involved in (4). Withdenoting the transposition
of particlesk and!, expressions (4) and (7) becorfe, = a(e)I +)_,_, o (T) Ry (tir), and

1 J—
= |:oe(e)1 + Za(r—md(rm}. ®)

k<l

5. Concluding remarks

Originally, the Hamiltonian (8) is derived [1] for the case when the orbital occupation numbers
n; are at most 1, meaning th&f, is the trivial subgroude}, and thereforeA,, (Sy) is the
regular (v!-dimensional) representation 6f,. In this case the coefficients can be chosen
arbitrarily, since each element 8§ is itself one double coset. Further, in this case the group
projectork (y*) is the identity operator in the spag€’, meaning that the whole spin space
is efficient.

Of course, for spin = % the transpositior;; is in the space?? represented by the
operatoid(z;;) = %(1 +s; - 5;), and (8) takes the usual form

Hy, =U+Y J(@a)s- 5. (9)
k<l

Although the same form is frequently used [2] with the spin operators fex % these
formal generalizations do not preserve the original physical meaning of the Heisenberg—Dirac
Hamiltonian: the resulting operator cannot be derived from the pure orbital interaction of the
identical particles (for higher spin the transpositions cannot be expressed by the spin matrices in
the same form). Even far= % the interaction coefficients can only be chosen independently
for any pair of sites for the occupation numbeys< 1; in other cases, they must be the same
over the same double coset$jf, while the relevant space is only a subspace of the total spin
spaceHY, which can be found easily with help of the subgroup proje§far/® D). Indeed,
using the direct product factorization of the graiip, the projector can be written in the form
Std ® DO)) = @S, (d ® D). Each of the factors may be found straightforwardly;
moreover, only the generating transpositions may be involved [5]. This simple restriction to
the relevant space may be used to reduce the time taken in various numerical calculations.
Finally, let me emphasize that the general form of the Hamiltonian acting in the space of the
ground representation of the symmetry group (thus commuting with it), given by theorem 1 is
the important result, independent of the Dirac—Heisenberg Hamiltonian. Indeed, this situation
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occurs in the context of the single-particle approximations [9], e.g. when the tight-binding
electronic levels, spin waves or normal vibrations modes are calculated: then the symmetry
group action can be factorized into a permutational paitG) and an interior parD’™(G).

The latter is related to the phenomena considered (this is a polar and axial vector representation
of the group in the case of normal modes and spin waves, and the representation carried by
the atomic orbitals from the same site in the electronic tight-binding calculations). The former
describes the geometry of the system, showing how the transformations of the group map one
site into another, and this is always the ground representation induced from the site stabilizer.
Again theorem 1 can be used to find the general form of the Hamiltonian, restricting possible
theoretical models and enabling further exact simplifications along to these presented in the
context of the Dirac—Heisenberg problem.
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