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Abstract. The general form of the operators commuting with the ground representation
(appearing in many physical problems within the single-particle approximation) of the group
is found. With the help of the modified group projector technique, this result is applied to a
system of identical particles with spin-independent interaction, to derive the Dirac–Heisenberg
Hamiltonian and its effective space for arbitrary orbital occupation numbers and arbitrary spin.
This gives transparent insight into the physical contents of this Hamiltonian, showing that formal
generalizations with spin greater than1

2 involve non-trivial additional physical assumptions.

1. Introduction

Considering systems of identical electrons interacting by Coulomb forces only, Dirac found [1]
that the effective Hamiltonian can be expressed in the spin space only:H = U+

∑
k<l Jklsk ·sl ,

wheresi is a vector of the Pauli matrices related to the spin in theith site. The aim of this
paper is to present a rigorous derivation of the Dirac–Heisenberg Hamiltonian for any spin,
within the framework of the original physical assumptions. This means that an arbitrary spin-
independent interaction of the identical particles is considered. Then, due to the perturbative
approach, the Hamiltonian is approximately reduced in the subspaces of the orbital state space
spanned by the vectors with the same occupation number. Such a subspace carries a special
induced type representation (ground representation) of the permutational group, commuting
with the reduced Hamiltonian. The general form of the operator commuting with the ground
representation is derived in section 2 and the result is applied to the considered Hamiltonian
in section 3, yielding its form in the orbital many-particle factor space. Finally, the required
form of the Hamiltonian is obtained in section 4, by a restriction to the relevant (symmetrized
or antisymmetrized) subspace of the total space. This step is based on the modified group
projector technique for the induced representations.

The result generalizes the original derivation with respect to spin and occupation
numbers. Nevertheless, the physical framework remains the same, in contrast to the
formal generalizations appearing in various theories of magnetic materials [2], when in the
Dirac–Heisenberg Hamiltonian only the values of spin and the interaction coefficients are
appropriately modelled.

The rest of the introduction gives a necessary reminder on the modified group projector
technique. LetD(G) be the representation of the groupG in the spaceHD, decomposing into
the irreducible componentsD(µ)(G) asD(G) = ⊕rµ=1aµD

(µ)(G) (aµ is the frequency number
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of D(µ)(G)). The symmetry-adapted [3, 4] (or standard) basis{|µtµm〉|µ = 1, . . . , r; tµ =
1, . . . , aµ;m = 1, . . . , |µ|} (|µ| denotes the dimension ofD(µ)(G)) in HD is defined by the
following condition:

D(g)|µtµm〉 =
|µ|∑
m′=1

D
(µ)

m′m(g)|µtµm′〉. (1)

To find this basis [5], the auxiliary representation0µ(G)
def= D(G) ⊗ D(µ)∗(G) in the space

HD ⊗H(µ)∗ is constructed for each irreducible componentD(µ)(G) (with aµ > 0) ofD(G).
Here,D(µ)∗(G) is the dual representation ofD(µ)(G); in fact, it is the conjugated one, since
the finite permutational groups and their unitary representations are considered. The range of

the modified projectorG(0µ)
def= (1/|G|)∑g 0

µ(G) is the (aµ-dimensional) subspaceFµ of
the fixed points for the representation0µ(G). For the arbitrary basis{|µtµ〉|µ = 1, . . . , aµ}
of Fµ, the subbasis{|µtµm〉|m = 1, . . . , |µ|} is found by the partial scalar product with the
standard vectors|µm〉 of the irreducible representation

|µtµm〉 = 〈µm|µtµ〉. (2)

If G is the symmetry group of the HamiltonianH (thus [D(g),H ] = 0 for eachg ∈ G), then
taking for |µtµ〉 an eigenbasis ofH ⊗ Iµ (Iµ is the identity inH(µ)∗ ), equation (2) gives the
symmetry-adapted eigenbasis forH : H |µtµm〉 = Eµtµ |µtµm〉.

The representations involved in this paper are of the induced type. Precisely, letK be
a subgroup ofG with the transversalZ = {zt |t = 0, . . . , |Z| − 1} (z0 is the identity of the
group,|Z| = |G|/|K|). ThenD(G) = 1(G) ⊗ d(G), where1(G) = 1′(K ↑ G) is an
induced representation andd(G) is some other representation ofG. In this case the modified
projectors can be reduced [6] to the subgroup modified projectorK(γ µ) for the representation
γ µ(K) = 1′(K)⊗ d(G ↓K)⊗D(µ)∗(G ↓K) in Hγ µ = H1′ ⊗Hd ⊗H(µ)∗ :

G(0µ) = Bµ{E00⊗K(γ µ)}Bµ†
. (3)

Here,Bµ
def= (1/√|Z|)∑zt

Et0⊗I1′ ⊗d(zt )⊗D(µ)∗(zt ) is partial isometry andEt0 = |zt 〉〈z0|
are |Z|-dimensional square matrices with only one non-vanishing element(Et0)t0 = 1. It
appears that the range ofK(γ µ) (the subspace inHγ µ ) is the effective space, while the effective
Hamiltonian isHµ = Bµ†

(H ⊗ Iµ)BµK(γ µ). Indeed, the symmetry-adapted eigensubbasis
|µtµm〉 corresponding to the irreducible representationD(µ)(G) is found by (2) with the
vectors|µtµ〉 = Bµ†|µtµ〉0, where|µtµ〉0 are the eigenvectors ofHµ from the range ofK(γ µ):
Hµ|µtµ〉0 = Eµtµ |µtµ〉0.

2. Invariants of ground representations

If K is the subgroup in the finite groupG, its left transversalZ gives the coset partition
G = ∑

t ztK. Therefore, to each elementg ∈ G there corresponds one elementg of Z:
there are uniquely definedk ∈ K andzt ∈ Z, such thatg = ztk, andzt is denoted byg.
Together with this coset decomposition, the subgroupK gives the double-coset decomposition
[7–9] of G overK: G = ∑

λKzλK. Each double coset decomposes onto one or more
cosets,KzλK =

∑
m zλmK. Thus, the double coset representatives can be chosen among the

elements of the transversalZ. The double-coset decomposition enables one to define for each
g ∈ G its double-coset representativezλ by g = kzλk′ (k, k′ ∈K), denoted also asg.

Furthermore, eachg ∈ G, and zm ∈ Z define uniquelyzs ∈ Z and k ∈ K, such
that gzm = zsk. Obviously, with the above notational convention,zs = gzm, and the left
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(permutational) action ofG over Z becomesg : zm 7→ gzm. This action is faithfully
represented by the linear operators of the left ground representationL(G) = 1(K ↑ G)
in the|Z|-dimensional vector space,Z: each element ofzm ∈ Z is mapped to the basis vector

|zm〉. The operators ofG are defined byL(g)|zm〉 def= |gzm〉, i.e.L(g) =∑m |gzm〉〈zm|. The
homomorphism conditionL(gg′) = L(g)L(g′) is easily checked.

Also, the right multiplicationzmg = zsk introduces the ‘right’ operatorsR(g):

〈zm|R(g) def= 〈zmg|, or R(g) = ∑
m |zm〉〈zmg|. These operators form an antirepresentation

(R(g)R(g′) = R(g′g)) if and only ifK is an invariant subgroup. Sincezszmk = zszm, it turns
out thatR(zmk) = R(zm) for eachk ∈ K, i.e. that the mappingg 7→ R(g) is a function over
the cosets ofK.

All the operatorsL(g) andR(g) are in the basis{|zm〉} given by the real matrices, with
elements 0 or 1. In particular, for the unitary (in fact orthogonal) matricesL(g) this yields
L(g)T = L(g−1).

Now, the condition that the operatorA acting in Z is invariant ofG means that
[A,L(g)] = 0 for eachg inG. Such an operator has a very special form.

Theorem 1. Any invariant operatorA in Z is of the formA =∑g∈G α(g)R(g), whereα(g)
is a function over double cosets ofK in G (i.e. these constants can be chosen independently,
one for each double coset).

The proof consists of two parts. At first, the commutation with the operatorsL(zm)

representing the transversal is used: because ofL(zm)|z0〉 = |zmz0〉 = |zm〉, one has
A = ∑

m,n〈m|A|n〉|m〉〈n| =
∑

mn〈z0|LT (zm)A|n〉|m〉〈n|. Sincez−1
m is also an element of

G, it commutes withA, and

A =
∑
mns

〈z0|A|zs〉〈zs |LT (zm)|zn〉|zm〉〈zn| =
∑
ms

A0s |zm〉〈zmzs |

giving finally A = ∑s A
1sR(zs). Consequently, the matrix of the invariantA is completely

determined by its first row. Secondly, the subgroup elements are employed; for each double-
coset representativezλ and each elementk ∈K it holds

A0λ = 〈z0|A|zλ〉 = 〈z0|L(k)A|zλ〉 = 〈z0|AL(k)|zλ〉 = 〈z0|A|kzλ〉.
Whenk goes overK, all the elementskzλ go over the coset representatives of the whole
double coset ofzλ, meaning that the matrix elementsA0s andA0t must be the same ifzt
and zs are from the same double coset. Together with the previous conclusion this gives
A =∑λ A

0λ∑
m R(zλm). To complete the proof, it remains to recall that the right operators

are the same for the elements of the same coset.
From theorem 1 it immediately follows that the number of linearly independent invariants

is equal to the number of double cosets ofK. Precisely, to each double coset represented
by zλ, there corresponds the invariantAλ =

∑
g∈KzλK R(g). In the special case, when

K = {e}, the trivial subgroup containing the identity only, the ground representation is the
regular representation of the group; since in this case each element of the group is itself one
coset and one double coset, there are exactly|G| independent invariants, each of them being
one of the operatorsR(g) (in this caseR(g−1) form the right regular representation ofG, being
equivalent to the left oneL(G)), and all the left operators commute with all the right ones.

3. Generalized Dirac–Heisenberg Hamiltonian

Let H = Ho ⊗ Hs be the quantum mechanical state space of some particle, whereHo
andHs are the orbital and the spin factor spaces. Then, for the system ofN particles
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the tensor powersHNo
def= Ho ⊗ · · · ⊗ Ho (N times) andHNs are constructed, and in

the spaceHN = HNo ⊗ HNs the symmetric (bosons) or antisymmetric (fermions) part are
considered as the state space of the total system. If{|i〉|i = 1, . . . , |o|} is a basis inHo, then

{|i1, . . . , in〉 def= |i1〉 · · · |iN 〉|i1, . . . , iN = 1, . . . , |o|} is a basis inHNo . Each of this vectors
defines the occupation number vectorn = (n1, . . . , n|o|), with the componentni showing the
number of particles in the state|i〉.

Each permutationπ of the symmetric groupSN , is represented by the operator1(π),

defined by the action1(π)|i1, . . . , iN 〉 def= |iπ−11, . . . , iπ−1N 〉. This action does not change
the occupation number of the basis vectors, and the orbit of the action gives the set of the
basis vectors with the same occupation numbers. Thus, each orbit is uniquely defined by
the occupation number and spans the subspaceHNn invariant for the representation1(SN).
Consequently, inHNn 1(SN) is reduced to the representation1n(SN). Its dimension is equal
to the order of the orbit with the occupation numbern, |1n| = N !/(n1! · · · n|o|!), since the
stabilizer of the vector with the occupation numbern isSnN = Sn1⊗· · ·⊗Sn|o| . Note that, being
induced from the trivial representation of the stabilizer,1n(SN) = 1(SnN ↑ SN),1n(SN) is a
ground representation [7].

To summarize, the spaceHNo is decomposed into the orthogonal sumHNo = ⊕nHNn . In
each of these subspaces acts the ground representation1n(SN), and the partial reduction of
the representation1(SN) is obtained:1(SN) = ⊕n1n(SN).

Let H be a spin-independent Hamiltonian of the system ofN identical particles. It is
written in the formH = H1 + H2, whereH1 =

∑N
s=1 hs is the non-interacting part. Here,

hi is a one-particle Hamiltonian, i.e. the operator in the spaceHo, while H2 =
∑

s<t Vst
describes two-particle interaction. SinceH commutes with the operators1(SN), all hs must
be equivalent: the full form ofhs is the tensor product of the identity operators in all the spaces
except in thesth one, where the corresponding factor is the same, for example,h. Analogously,
all the operatorsVst are the same except that their non-trivial action is reduced to the different
pair of spaces.

If the basis{|i〉} is chosen as the eigenbasis ofh (with the eigenvaluesεi), then the
vectors of the subspaceHNn are the eigenvectors ofH1 for the eigenvalueEn =

∑d
i=1 niεi .

Although this subspace need not be invariant forH2, the approximationH2 ≈ ⊕nH2n, with
H2n = PnH2Pn (Pn stands for the projector ontoHNn ) enables the perturbative approach,
involving the eigenproblems of the operatorsH2n. SinceH2 is invariant ofSN in the whole
spaceHNo , the operatorsH2n are alsoSN -invariants, i.e. they commute with the corresponding
representation1n(SN). Recalling that this is the ground representation, theorem 1 gives the
most general form

H2n =
∑
π∈SN

α(π)Rn(π). (4)

Here,Rn(π) are the right operators of1n(π), while the coefficientsα are equal for all the
permutations from the same double coset ofSnN .

Until now, only the orbital spaceHNo has been considered, since the Hamiltonian acts
trivially in the spin factors. Nevertheless, the particles are identical, and either the symmetrized
or the antisymmetrized part of the total spaceHN is to be considered. The orbital occupation
number decomposition yields the decomposition of the total space:HN = ⊕nHNn⊗HNs . Using
an arbitrary basis{|σ 〉|σ = 1, . . . ,2s+1} in the single-particle spin spaceHs , the representation

d(SN) inHNs is defined analogously to1(SN) inHNo : d(π)|σ1, . . . , σN 〉 def= |σπ−11, . . . , σπ−1N 〉,
and in the total space the permutationπ is represented by the operator1(π)⊗d(π). Obviously
the subspacesHNn ⊗HNs are invariant for the action of1⊗d, and the modified group projector
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of the irreducible representationD(µ)(SN),

SN(1⊗ d ⊗D(µ)∗) = 1

N !

∑
π

1(π)⊗ d(π)⊗D(µ)∗(π) = ⊕nSN(1n ⊗ d ⊗D(µ)∗) (5)

treats each of these subspaces independently. Therefore, in each subspaceHNn ⊗HNs there is
the subspaceHµns corresponding to the representationD(µ)(SN). It is spanned by the standard
subbasis{|µtµm〉}, obtained by (2) from any basis{|n;µtµ〉} of the rangeFµn of the projector
SN(1n ⊗ d ⊗ D(µ)∗); obviously,Fµn is the intersection ofHNn ⊗ HNs ⊗ H(µ)

∗
and the range

Fµ of the projector (5). In particular, taking the identity and the alternating representations,
D(±)(π) = (±)π (as usual,π in the exponent denotes the parity ofπ ) for D(µ)(SN), the
projector (5) becomes the symmetrizer and antisymmetrizer, respectively; in these cases of
one-dimensional irreducible representationsF±n is itself the subspaceH±ns .

4. Restriction to the relevant subspace

Since the involved representations are of the induced type, the modified group projector
technique isomorphically relates by equation (3) the subspaceFµn of HNn ⊗ HNs ⊗ H(µ)

∗

to the effective subspace, being the range of the subgroup projectorK(γ µ) in HNs ⊗ H(µ)
∗

(since1′(K) is a trivial representation). Of course, the effective HamiltonianH
µ

2n acts in the
spaceHNs ⊗H(µ)

∗
with the range contained inFµn . In particular, for the physically important

representationsD(±)(SN), the effective HamiltonianH±2n acts in the spin spaceHNs , as well as
K(γ±).

Precisely, in the considered contextG = SN ,K = SnN ,1′(K) = 1(SnN) andd(SN) is the
permutational representation in the spin space. Thus,

Bµn =
1√|Z|

∑
t

|zt 〉〈z0| ⊗ d(zt )⊗D(µ)∗(zt )

(with the omitted number 1 standing for1′). Then, skipping the factorE00 = |z0〉〈z0| (this
only gives the space of the action ofHµ

2n), one finds

Bµ
†

n (H2n ⊗ Iµ)Bµn =
1

N !

∑
π

∑
p,t

α(π)〈zt |R(π)|zp〉d(z−1
t zp)⊗D(µ)∗(z−1

t zp).

The matrix element ofR(π) is obviously〈ztπ |zp〉 = δzp,ztπ (Kronecker delta). When the sum
overπ = zqκ is decomposed onto the sums over the transversal (q) and stabilizer (κ), the
equalityztzqκ = ztzq for κ ∈ SnN shows that all the terms are independent ofκ. Thus

Bµ
†

n (H2n ⊗ Iµ)Bµn =
1

|Z|
∑
q,t

α(zq)d(z
−1
t zt zq)⊗D(µ)∗(z−1

t zt zq).

Since the elementz−1
t zt zq can be written in the formzqκ ′ (i.e. it is from the coset represented

by zq), multiplication bySnN(d ⊗D(µ)∗) gives

H
µ

2n =
|Z|
N !

∑
q

∑
κ

α(zq)d(zqκ)⊗D(µ)∗(zqκ)

and finally,

H
µ

2n =
1

n1! · · · n|o|!
∑
π

α(π)d(π)⊗D(µ)∗(π). (6)
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This relation is, in fact, the most general form of theµth component of the permutational
invariant Hamiltonian acting inHNn ⊗HNs , being trivial inHNs . Note that this operator acts in
the space isomorphic to the direct product ofHNs and the space of the representationD(µ)(SN).
Still, the range of the projectorK(γ µ) = [1/(n1! · · · n|o|!)]

∑
κ γ

µ(κ) is the effective part of
this space (its orthocomplement is from the kernel ofH

µ

2n). Finally, let me stress again that
the coefficientsα can be deliberately chosen only one for each double coset ofSnN .

Two simplifications are physically relevant. First, as has been mentioned already, the
irreducible representationD(µ)(SN) is actually either the symmetric or the antisymmetric one,
giving

H±2n =
1

n1! · · · n|o|!
∑
π

(±)πα(π)d(π). (7)

In these cases, the effective space ofH±2n is the subspace in the spin spaceHNs .
The second one is that only two-particle interactions are considered, meaning that only the

permutations of at most two particles are involved in (4). Withτkl denoting the transposition
of particlesk andl, expressions (4) and (7) becomeH2n = α(e)I +

∑
l<k α(τlk)Rn(τlk), and

H±2n =
1

n1! · · · n|o|!

[
α(e)I ±

∑
k<l

α(τkl)d(τkl)

]
. (8)

5. Concluding remarks

Originally, the Hamiltonian (8) is derived [1] for the case when the orbital occupation numbers
ni are at most 1, meaning thatSnN is the trivial subgroup{e}, and therefore1n(SN) is the
regular (N !-dimensional) representation ofSN . In this case the coefficientsα can be chosen
arbitrarily, since each element ofSN is itself one double coset. Further, in this case the group
projectorK(γ±) is the identity operator in the spaceHNs , meaning that the whole spin space
is efficient.

Of course, for spins = 1
2 the transpositionτij is in the spaceHN

s represented by the
operatord(τij ) = 1

2(I + si · sj ), and (8) takes the usual form

H−2n = U +
∑
k<l

J (τkl)sk · sl . (9)

Although the same form is frequently used [2] with the spin operators fors 6= 1
2, these

formal generalizations do not preserve the original physical meaning of the Heisenberg–Dirac
Hamiltonian: the resulting operator cannot be derived from the pure orbital interaction of the
identical particles (for higher spin the transpositions cannot be expressed by the spin matrices in
the same form). Even fors = 1

2, the interaction coefficients can only be chosen independently
for any pair of sites for the occupation numbersni 6 1; in other cases, they must be the same
over the same double coset ofSnN , while the relevant space is only a subspace of the total spin
spaceHNs , which can be found easily with help of the subgroup projectorSnN(d⊗D(−)). Indeed,
using the direct product factorization of the groupSnN , the projector can be written in the form
SnN(d ⊗ D(−)) = ⊗|o|i=1Sni (d ⊗ D(−)). Each of the factors may be found straightforwardly;
moreover, only the generating transpositions may be involved [5]. This simple restriction to
the relevant space may be used to reduce the time taken in various numerical calculations.

Finally, let me emphasize that the general form of the Hamiltonian acting in the space of the
ground representation of the symmetry group (thus commuting with it), given by theorem 1 is
the important result, independent of the Dirac–Heisenberg Hamiltonian. Indeed, this situation
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occurs in the context of the single-particle approximations [9], e.g. when the tight-binding
electronic levels, spin waves or normal vibrations modes are calculated: then the symmetry
group action can be factorized into a permutational partDP(G) and an interior partDint(G).
The latter is related to the phenomena considered (this is a polar and axial vector representation
of the group in the case of normal modes and spin waves, and the representation carried by
the atomic orbitals from the same site in the electronic tight-binding calculations). The former
describes the geometry of the system, showing how the transformations of the group map one
site into another, and this is always the ground representation induced from the site stabilizer.
Again theorem 1 can be used to find the general form of the Hamiltonian, restricting possible
theoretical models and enabling further exact simplifications along to these presented in the
context of the Dirac–Heisenberg problem.
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