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Symmetry and lattices of single-wall nanotubes
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Abstract. The full Euclidean symmetry groups for all the single-wall carbon nanotubes are non-
Abelian non-symorphic line groups, enlarging the groups reported in the literature. For the chiral
tubes(n1, n2) (n1 > n2 > 0) the groups areLqp22 = T rqDn, wheren is the greatest common

divisor ofn1 andn2, q = 2(n2
1 +n1n2 +n2

2)/nR, while the parametersr andp are expressed in the
closed forms as functions ofn1 andn2. The numberR is three ifn1 − n2 is a multiple of 3n and
one otherwise; it divides the tubes into two bijective classes. The line group uniquely determines
the tube, unlessq = 2n (thenr = 1), when both the zig-zag(n, 0) (R = 1) and the armchair
(n, n) (R = 3) tubes are obtained, with the line groupL(2n)n/mcm = T n2nDnh having additional
mirror planes. Some physical consequences are discussed: metallic tubes, quantum numbers and
related selection rules, electronic and phonon bands, and their degeneracy, and applications to
tensor properties.

1. Introduction

The high symmetry of the single-wall carbon nanotubes has attracted much interest [1, 2] from
the very beginning of the theoretical investigation of these systems. At first, the tubes were
classified according to the principle axis of the related C60 molecule [3]. Then their translational
periodicity was discussed [4]: due to much greater length (up to tens ofµm) in comparison
with diameter (down to 0.7 nm), tubes are regarded as quasi-1D crystals. Finally, the helical
and rotational symmetries were found [5, 6]. In this paper we give the full Euclidean symmetry
group of the infinite single-wall tubes, thus summarizing and completing these investigations.

In section 2 the necessary notions about the line groups are briefly summarized and the
relevant notation is introduced. Then the line groups of all the nanotubes are derived: only the
symmetries of the original 2D graphene lattice remaining the symmetries of the rolled up lattice
form the corresponding line group. Besides the rotational, translational and helical symmetries,
the horizontal axes and (only for zig-zag and armchair tubes) mirror and glide planes are also
present. In section 3 it is shown that the symmetry group uniquely determines the tube; the
exceptions are pairs of one zig-zag and one armchair tubes with the same symmetry. Some of
the possible applications of the obtained results in the physics of nanotubes are discussed in
the last section.

2. Symmetry of nanotubes

The line groups [7, 8] are the groups of the Euclidean symmetries of the systems translationally
periodical in one direction. Besides the stereoregular polymers, typical examples are quasi-1D
crystals, including the single-wall carbon nanotubes.
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Each system periodic along one axis (conveniently chosen to be thez-axis) is a regular
arrangement of the monomers (elementary structural units) along thez-axis. Generally, such
a regular arrangement is not achieved by pure translations, but by screw axis or glide plane,
generalizing and refining the translational group. In this sense the monomer is only a part of
an elementary cell. The structure of the line group of such a system reflects the structure of
the system: it is factorized onto the subgroup describing the symmetry of monomer and the
subgroup related to the arrangement of the monomers. Thus, each line groupL is a weak-direct
productL = ZP of a group of the generalized translationsZ (arranging the monomers) and
an axial point groupP (symmetry of monomer). The axial point groupP leaves thez-axis
invariant, and it is one of the groups [9]:Cn,S2n,Cnh,Cnv,Dn,Dnd ,Dnh, wheren = 1, 2, . . .
is the order of the principle rotational axis. The infinite cyclic groupZ is either a screw axis
or a glide plane group. In the latter case its generator in the Koster–Seitz notation is(σv| a2),
wherea denotes the translational period of the groupL, while σv is vertical mirror plane.
The generator of the screw axis groupT rq (a) is z = (Crq | nq a), whereq andr are non-negative
integers such thatq is multiple ofn. The choice ofr is not unique: to givenr any multiple of
q

n
may be added, with no effect on the resulting groupL. Two different conventions may be

used to fix the value ofr: (i) the minimal allowed value is used (thenr is coprime withq
n
); (ii)

the minimal allowed value being coprime withq is considered [7]. The translational period of
L containsq

n
monomers, each of them being obtained from the previous one by the rotation

for 2π
q
r followed by the fractional translation forq

n
a. There are infinitely many line groups

and they are classified into 13 families, differing by the factorsZ andP , while n enumerates
the groups within the family.

In order to determine the line group comprising all the Euclidean symmetries of the
nanotube, the procedure of folding up the graphene 2D lattice is used. The symmetries of this
honeycomb latticeH form [10] the diperiodic groupDg28 = D6hT (with the international
symbol 6

m
2
m

2
m

). The translational groupT is generated by the translations for the basis vectors
a1 anda2 (with lengtha0 = 2.461 Å). The elementary cell over these vectors contains two
carbon atoms (see figure 1) at(a1 +a2)/3 and 2(a1 +a2)/3. The principal axis of order six of
the groupD6h (perpendicular toH) passes through the origin at the centre of a hexagon. The
elements ofDg28 which remain the symmetries of the rolled up lattice form the tube’s line
group.

Figure 1. Honeycomb lattice. Left: projections ofa1 anda2 onto the chiral vectorc and the
orthogonal direction areϕi and τi (i = 1, 2), respectively, whileθ is the chiral angle. The
elementary honeycomb cell is shaded. Right: the sublatticeHM is shaded; its subsetH3 is shaded
dark. The lines denote the mirror planes of the lattice.
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At first, the translations are examined. The tube(n1, n2) is onH determined by the

chiral vectorc = n1a1 + n2a2, (with the lengthc =
√
n2

1 + n1n2 + n2
2a0 and the chiral angle

θ = arctan
√

3n2
2n1+n2

): H is rolled up so thatc becomes the circumference of the tube. The
translations ofH along this chiral vector become the rotations around the tube axis. The
minimal one among them is̃c = c/n, wheren is the greatest common divisor ofn1 andn2.
Thus, the group of pure rotations of the tube is the cyclic groupCn, generated by the rotation
Cn for 2π/n. The pure translations of the tube are the honeycomb translations in the direction
orthogonal toc; the minimal one isa = a1a1 + a2a2, provideda1 anda2 are coprimes. Then
the orthogonality conditiona · c = 0 is easily solved

a = −n1 + 2n2

nR
a1 +

2n1 + n2

nR
a2 a = |a| =

√
3(n2

1 + n2
2 + n1n2)

nR
a0. (1)

Here,R = 3 if n1 − n2 is multiple of 3n, andR = 1 otherwise. Knowingn anda, the
screw axis generator is found as follows. Each 2D lattice translation becomes, on the tube,
an element of the groupT rqCn. Since the honeycomb is generated by the lattice translations
from its elementary cell, the tube must be generated byT rqCn from the pair of C atoms in the
honeycomb elementary cell. In the tube’s elementary cell there areq/n monomers, each of
them containingn elementary honeycomb cells (obtained by the action ofCn), and altogether
there areq honeycomb cells in the tube’s period. On the other hand, the area of this cylindrical
surface isca; dividing it by the area of the honeycomb elementary cell|a1× a2|, one finds:

q = 2
n2

1 + n1n2 + n2
2

nR
. (2)

The primitive translationsa1 anda2 of the 2D lattice also generate the rolled-up lattice,
i.e. the groupT rqCn, with elements(Crtq C

s
n|t nq a) (t = 0,±1, . . . ; s = 0, . . . , n − 1). Let

the element corresponding toai be (Crtiq C
si
n |ti nq a) (i = 1, 2), i.e. rotation for the angle

ϕi = 2π(rti + qsi/n)/q followed by the translation forτi = tina/q. Then, simple geometry
(see figure 1) shows

t1 = −n2

n
t2 = n1

n
s1 = 2n1 + (1 + rR)n2

qR
s2 = (1− rR)n1 + 2n2

qR
. (3)

The minimalr that provides the integral solutions ins1 ands2 is coprime toq/n (ϕ(m) is the
Euler function, giving the number of coprimes not greater thanm):

r = n1 + 2n2 − ( n2
n
)ϕ(

n2
n
)−1qR

n1R

(
mod

q

n

)
. (4)

The other possible values are obtained by adding to (4) the multiples ofq/n. If the value
(4) andn are not coprimes, the first convention (r coprime toq) is satisfied by some of these
numbers. This completes the determination of the subgroupT rqCn. It belongs to the first line
group family [7] with the international symbol

Lqp p = nR (
2n2+n1
nR )ϕ(

2n1+n2
nR )−1q − n2

2n1 + n2
(mod q) (5)

(p is found from (4) analogously tor, writing the general element of the line groupLqp in the
form (Ciq |(j + Fr[ ip

q
])a); Fr denotes the fractional part).

Note that the parameterq is the order of the principal axis of the isogonal point group
[7, 8]. Only whenq = n do no screw axes emerge (i.e. the generalized translation groupZ
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is pure translational). Nevertheless, according to the lemma proved in the appendix,q/n for
any nanotube has the very specific form:

q̃ = q

n
= 2 (mod 12). (6)

Obviouslyq̃ > 2, and all the nanotubes have non-trivial screw axes, i.e. the corresponding line
groups are non-symorphic. Moreover,q̃ equals two only ifñ1 = 1 andñ2 being either zero
(thenR = 1) or one (R = 3), singling out the zig-zag(n, 0) and the armchair(n, n) tubes,
respectively. Simple inspection of the table of the line groups [7, 8] shows that forq̃ > 2,
only the horizontal axis of order two is compatible with the screw axis, while forq̃ = 2 (then
r = 1), mirror or glide planes may be additionally incorporated. This anticipates that the
zig-zag and armchair tubes have larger symmetry groups then the chiral ones.

When the 2D translations are transferred in the tube’s geometry, the remaining honeycomb
symmetries can be examined. These are point group operations fromD6h (rotations for2π

6 i,
i = 0, . . . ,5 around the vertical axis and six vertical mirror planes through the centres of the
hexagons) and their combinations with 2D translations (two types of vertical glide planes—
through the midpoints of the adjacent edges and through the midpoints of the next to nearest
neighbour edges of the carbon hexagons, figure 1). According to the emphasized compatibility
with the derived non-trivial screw axis, only the rotation forπ may remain the symmetry of
the rolled up lattice; indeed, this rotation gives the horizontal axisU of the tube, as it is easily
seen. Additional symmetries may appear only for the zig-zag and armchair tubes. Obviously,
only in these cases is there a vertical mirror plane fromD6h containing the chiral vectorc; it
becomes the horizontal mirror planeσh of the folded lattice. Also, only in these cases is there
a plane fromD6h that is orthogonal to the chiral vector, as well as the glide planes parallel
with and orthogonal to the chiral vector. These planes become on the tube, the vertical mirror
planeσv = Uσh, the roto-reflectional planeσhC2n and the vertical glide plane(C2nσv| 12a),
respectively.

Thus, the derivation of the symmetry group of the single-wall tubes is accomplished. As
for the chiral tubes, besides the screw axes and pure rotations, there is also the horizontal axis
U , enlarging the point factor toDn. For the zig-zag and the armchair tubes only, the point
factor isDnh, containing additional mirror planes. Altogether, the line group of the tube is:

Lchiral = T rqDn = Lqp22

Larmchair= Lzig-zag= T 1
2nDnh = L2nn/mcm

(7)

with q, r andp given by (2), (4) and (5), respectively. The isogonal point groups [8] areDq

for the chiral tubes, andD2nh for the zig-zag and armchair tubes.
These results are derived for the tubes withn1 > n2 > 0, i.e. for the chiral angles

0 6 θ 6 π
6 . As for the tubes withn2 > n1 > 0 (π6 6 θ 6 π

3 ), they are obtained from the
previously considered tubes as their mirror images in the plane along the armchair direction
(1, 1). Therefore, the line group parametersq andn are the same for the pair of the mirror
reflected tubes(n1, n2) and(n2, n1), while the helical parametersr (coprime withq̃) andp
are changed tõq − r andq − p, since the reflection changes the sense of the screw axis
rotation. The remaining chiral vectors are obtained by the rotations for multiples of 2π/6 from
the encountered vectors with 06 θ 6 π/3, yielding the equivalent tubes with the same line
groups.

3. Uniqueness and lattice geometry

The set of the generators of the derived line groups contains, besidesU and, in the zig-zag and
armchair cases,σh, two generators of the groupLqp = T rqCn. There are two natural choices
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of them: the factorized form emphasizes the pairz = (Crq | nq a) andCn, while the international
notation is based on the generators(I |a) andh = (Cq |pq a). Since (as has been pointed out)
T rqCn corresponds to the groupT ofH, the latter must be generated by the pair of the vectors
corresponding to the generators of the former one. Easy calculation with the help of (3) and
(1) shows that the corresponding vectors arez = − (1−rR)n1+2n2

qR a1 + 2n1+(1+rR)n2
qR a2, c̃ (the

first choice),a andh = (R−p)n1+2n2

qR a1 + 2n1+(R+p)n2

qR a2 (the second choice). The coordinates
of all these generators must be coprimes, to ensure that the obtained cell is elementary (the
parametersr andp can be also found from this requirement).

Note that all the involved quantities can be separated into two classes: those independent
of n (e.g.a, r, R, z, h), and those proportional ton (e.g.c, n, q, p). The latter ones can be
divided byn, yielding additional quantities independent ofn (like q̃, c̃ = ñ1a1+ ñ2a2, p̃). If H̃
denotes the subset of the honeycomb latticeH with coprime coordinates, then to each vector
c from H corresponds a unique ‘projection’c̃ from H̃ (this map is obviously idempotent).
All the collinear vectors inH have the same projection. The vectors corresponding to the
generators of the line groups are from̃H; being independent onn, the same vectorsz, c̃, a
andh characterize all the nanotubes with the collinear chiral vectors. These chiral vectors
differ by lengthsc = nc̃. Sincen becomes the order of the generatorCn of the line group,
the corresponding line groups are different: their generators differ despite having the same
representative vectors onH. This means that the line group parametersr (given by (4)) anda
are constant along the same chiral direction, whileq is determined by the valuẽq corresponding
to the projectionc̃ of this direction ontoH̃, and to all other collinear lattice vectors (i.e.nc̃)
correspondsq = nq̃.

The latticeH is a disjoint union of the subsetsH1 andH3, containing the chiral vectors with
R = 1 andR = 3, respectively (the vector 0 is inH3). The first subset generates (by the integer
linear combinations) the whole latticeH, whileH3 generates the sublatticeHM ofH, containing
all the vectors(n1, n2) such thatn1 − n2 is multiple of three. Its complementHS = H \HM
is a subset inH1 (the tubes with the chiral vectors fromHM are metallic, and the other ones
are semiconducting). Projections ofH3 to H̃ give the subset̃H3 = H̃ ∩H3 = H̃ ∩HM , with
the coprime pairs(ñ1, ñ2) such that̃n1 − ñ2 is multiple of three (n1 − n2 = 3k meansR = 3
on H̃), whileH1 is projected onto the remaining partH̃1 = H̃ ∩H1 = H̃ ∩HS .

The line group parameterq determines the lengthc of the chiral vector asc =
√
qnR

2 a0.

Consequently, on each of the subsetsH̃1 andH̃3 the chiral vectors of the tubes with the same
q = q̃ are on the same circle with the radiusc. Analogously, the length of the vectorz is
determined bỹq andr as

z2 = (z2
1 + z1z2 + z2

2)a
2
0 =

3 + r2R2

2q̃R
a2

0. (8)

Thus, all the tubes with samer andq̃ have the vectorsz on the same circle with radiusz. The
angleχ between the vectorsc andz is given by tanχ = √3/rR, revealing that the parameter
r determines the angle of the helix generated by the helical groupT rq .

Theorem 1. The line group parameters{q, r, n} uniquely characterize the non-equivalent
tubes, except that to{2n, 1, n} correspond two tubes: the zig-zag tube(n, 0) and the armchair
one(n, n).

Proof. Sincer is independent ofn, andq is proportional ton, it is sufficient to prove the
theorem for the parameters{q̃, r,1} of the line groups corresponding tõH. At first, we prove
that these parameters can be the same for two tubes with the chiral vectorsc̃ andc̃′ both from
the same subset̃H1 or H̃3 if and only if they are equivalent. Indeed, sincec̃ = c̃′ andz = z′,
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whileχ = χ ′, there is a rotation for angleθ − θ ′ mapping the lattice basis{c̃, z} into the basis
{c̃′, z′}. But, connecting two bases ofH, this rotation is a symmetry of the honeycomb lattice:
θ − θ ′ is multiple of π3 , and the tubes are equivalent. It remains to compare the tubes from
H̃1 andH̃3. Sincez2 is a positive integer (in the units ofa2

0), (8) requiresr2R2 + 3= 2αRRq̃
with αR being a positive integer. For the subsetsH̃1 andH̃3, this givesr2 + 3 = 2α1q̃ and
3r2 +1= 2α3q̃. It follows that(3α1−α3)q̃ = 4, with the unique solutioñq = 2,α1 = α3 = 1
andr = 1. �

From (1) followsa2 − a1 = −3(ñ1 + ñ2)/R, and this is multiple of three if and only if
R = 1. Thus,a andc are always from the different subsetsHR. Moreover, ifc (together with
c̃) is fromH3, thenz must be fromH1, since otherwisẽc andz would not generateT . On the
other hand, ifc is fromH1, then the coordinates ofz satisfy(z1−z2)q̃ = (ñ1−ñ2)r−3(ñ1+ñ2).
It has been emphasized that instead ofr, the valuesrα = r + αq̃ (α = 0, . . . , n − 1) can be
used. Among them, at least one is a multiple of three, giving the equivalent generatorzα from
H3 (since by (6)q̃ is not divisible by three). To resume, the basis{z, c̃} generating the tubes
line group can be always chosen such that its vectors belong to different subsetsHR.

Some specific symmetry properties of the metallic tubes can be derived. SinceHM is
a sublattice inH, with the elementary cell containing three cells ofH, the metallic tubes
can be studied also with help of this lattice. The translational groupTM of HM is an index-
three subgroup ofT , resulting on the tube in the index-three subgroup of (5). There are two
possibilities forc: either it is fromH3 (as well asc̃) or from H1. In the first case,a is
in H̃1, i.e. inHS , as well asz. Thus, these vectors should be substituted by 3a and 3z to
obtain theHM lattice vectors, with 3z andc̃ generatingTM . On the tube, these correspond to
(Crq | nq a)3 andCn, generating the line groupT 3r

q (3a)Cn. If c ∈ H1 ∩HM , thenn is divisible
by three, thena and (suitably chosen)z are inH3, but c̃ is not, and 3̃c must be chosen as the
generator of theHM . On the tubez andc̃ correspond to(Crq | nq a) andCn/3, generating the line

groupT r/3q/3(a)Cn/3. Thus, a metallic tube is a quasi-1D crystal composed of three subcrystals
obtained by the action of the found groups on the pair of the neighbouring C atoms: each
subsystem contains every third monomer of the original tube ifR = 3, and one third of each
original monomer ifR = 1.

4. Concluding remarks

The full symmetry group of the single-wall carbon nanotubes areLqp22= T rqDn for the chiral
tubes andL2nn/mcm = T 1

2nDnh for the zig-zag(n, 0) and the armchair(n, n) ones. These
groups of the geometrical symmetries contain horizontal rotational axes and, in the cases of
the zig-zag and armchair tubes, mirror and glide planes, in addition to the previously reported
rotations, translations and screw axes. The parametersq andr (andp) of the helical group are
found in the simple and closed form. The principal axis of the isogonal point group of the tube
is of the orderq = 2n (mod 12n), halving the number of the carbon atoms in the translational
period of the tube.

The different tubes have different symmetry groups. Especially, knowing the symmetry
parametersq, r andn, the corresponding nanotube can be identified, with the exception of
the pairs(n, 0) and (n, n), having the same groups, but still different translational periods.
The symmetry parametersq, r andn are discrete, thus allowing, at least in principle, exact
experimental determination, being sufficient to identify the tube. Moreover, single-wall carbon
tubes are single orbit systems, i.e. the whole tube is generated by the line group action on the
single C atom. This means that the symmetry completely determines the geometry of the
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tube and all consequent physical characteristics. For the chiral tubes the stabilizer is trivial,
i.e. when the initial C atom is fixed, each other atom uniquely determines the element of the
line group mapping it to the initial one (the orbita1 in the notation of [7]). The zig-zag and
armchair tubes are produced by the action of the subgroupT 1

2nDn on an arbitrary atom, and
the stabilizers of the atoms contain two elements (the orbits areb1 for the zig-zag, andd1 for
the armchair tubes).

There are many physical properties based on symmetry, and the presented classification
of the nanotubes according to their symmetry can be widely exploited. At first, the symmetry
determines the conserved quantum numbers. To begin with the single-wall nanotubes. The
translational periodicity is reflected in the conserved quasi-momentumk, taking the values from
the 1D Brillouine zone(−π, π ], or its irreducible domain [11] [0, π ]. Also, thez-component
of the quasi-angular momentumm is the quantum number caused by the symmetry of the
isogonal rotations; it takes on the integer values from the interval(− q

2 ,
q

2 ], and characterizes
the nanotube energy bands. These quantum numbers are usually used (e.g. [2]). Alternatively,
the helical quasi-momentum̃κ ∈ [0, π ] can be considered; it not only incorporates the quasi-
momentum, but also a part of the angular momentum. The remaining quasi-angular momentum
is then given by the quantum numberm̃ taking the integer values from(− n

2,
n
2] (k̃ and m̃

are used in [5]). The next quantum number is the parity with respect to the reversal of the
z-axis, induced by the horizontal rotational axisU . Finally, only for the zig-zag and the
armchair tubes, is there additional vertical mirror plane parity. The quantum numbers are
closely related to the representations of the line groups, and classify the irreducible ones (see
[12] for the representations related tok andm, and [7] for k̃ and m̃). Thus, it is easy to
make the assignation of the energy bands (electronic, phononic etc) by the quantum numbers,
immediately giving their degeneracy and the selection rules [13, 7]. In this context, let us only
mention here that the zero gap of the metallic tubes (within the tight binding approximation
[2, 5]) for the tubes with the chiral vectors fromHM appears since the contributions to the
electronic band energy of the mentioned three identical subcrystals cancel for some bands.

Many other physical applications of the line group symmetry are already considered, and
may now be directly applied: the results on the specific forms of the tensorial characteristics
of the tubes [14] (determined by the isogonal groups), vibronic coupling [7], phase transitions,
invariant potentials [15] and x-ray form factors [16] are available. Finally, let us emphasize
that, since the tubes are single-orbit systems, the quantum states of the (quasi)particles related
to different physical processes transforms according to the ground representation [9] of the
symmetry group. This simplest induced representation enables one to apply the most powerful
modified group projector technique [17], and its computer implementations in the physics of
nanotubes [8].
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Appendix. Orders of isogonal rotations

As shown in the main text, the order of the principal axis of the isogonal group isq = nq̃. It
appears that the integerq̃ may take quite specific values.

Lemma 1. For any pair of integersn1 andn2 with the greatest common divisorn, there exist
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non-negative integerk, satisfying:

q̃ = 2
n2

1 + n1n2 + n2
2

n2R
= 12k + 2 with R =

{
3 if n1− n2 = 0 (mod 3n)

1 otherwise.

Proof. Using coprimesñ1 and ñ2, with the difference1 = ñ1 − ñ2, one easily finds
q̃ = 2(ñ2

1 + ñ1ñ2 + ñ2
2)/R = 2(3ñ2

1 + 31ñ2 + 12)/R. All possible cases are examined:
if R = 3, then1 = 3d and whileñ2 = 3m ± 1, excluding the case when simultaneously
m andd are odd and even (theñn1 andñ2 are both even, and not coprimes); ifR = 1, then
1 = 3d ± 1, excludingñ2 even whiled is odd. It is easily checked thatq̃ − 2 is multiple of
12. �

Consequently,̃q is not divisible by three, but it is always even and greater than one.
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[15] Vuković T, Miloševíc I and Damnjanovíc M 1996Phys. Lett.A 216307
[16] Kirschner I, Mészaros C and Laiho R 1998Eur. Phys. J.B 2 191
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