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Symmetry and lattices of single-wall nanotubes
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Abstract. The full Euclidean symmetry groups for all the single-wall carbon nanotubes are non-
Abelian non-symorphic line groups, enlarging the groups reported in the literature. For the chiral
tubes(ny, np) (n1 > n» > 0) the groups ardg,22 = T, Dy, wheren is the greatest common

divisor ofn1 andny, ¢ = 2(n§ +niny +n§)/n7€, while the parametersandp are expressed in the

closed forms as functions afi andn,. The numbem is three ifn; — n2 is a multiple of 3 and

one otherwise; it divides the tubes into two bijective classes. The line group uniquely determines
the tube, unlesg = 2n (thenr = 1), when both the zig-zag:, 0) (R = 1) and the armchair

(n,n) (R = 3) tubes are obtained, with the line grofig2n),, /mcm = Ty, D,;, having additional

mirror planes. Some physical consequences are discussed: metallic tubes, quantum numbers and
related selection rules, electronic and phonon bands, and their degeneracy, and applications to
tensor properties.

1. Introduction

The high symmetry of the single-wall carbon nanotubes has attracted much interest [1, 2] from
the very beginning of the theoretical investigation of these systems. At first, the tubes were
classified according to the principle axis of the relatggif@olecule [3]. Thentheirtranslational
periodicity was discussed [4]: due to much greater length (up to teps®fin comparison
with diameter (down to 0.7 nm), tubes are regarded as quasi-1D crystals. Finally, the helical
and rotational symmetries were found [5, 6]. In this paper we give the full Euclidean symmetry
group of the infinite single-wall tubes, thus summarizing and completing these investigations.
In section 2 the necessary notions about the line groups are briefly summarized and the
relevant notation is introduced. Then the line groups of all the nanotubes are derived: only the
symmetries of the original 2D graphene lattice remaining the symmetries of the rolled up lattice
formthe corresponding line group. Besides the rotational, translational and helical symmetries,
the horizontal axes and (only for zig-zag and armchair tubes) mirror and glide planes are also
present. In section 3 it is shown that the symmetry group uniquely determines the tube; the
exceptions are pairs of one zig-zag and one armchair tubes with the same symmetry. Some of
the possible applications of the obtained results in the physics of nanotubes are discussed in
the last section.

2. Symmetry of nanotubes

The line groups [7, 8] are the groups of the Euclidean symmetries of the systems translationally
periodical in one direction. Besides the stereoregular polymers, typical examples are quasi-1D
crystals, including the single-wall carbon nanotubes.
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Each system periodic along one axis (conveniently chosen to bheakis) is a regular
arrangement of the monomers (elementary structural units) alongakis. Generally, such
a regular arrangement is not achieved by pure translations, but by screw axis or glide plane,
generalizing and refining the translational group. In this sense the monomer is only a part of
an elementary cell. The structure of the line group of such a system reflects the structure of
the system: it is factorized onto the subgroup describing the symmetry of monomer and the
subgroup related to the arrangement of the monomers. Thus, each lindgsapeak-direct
productL = Z P of a group of the generalized translatiaigarranging the monomers) and
an axial point groupP (symmetry of monomer). The axial point gropleaves thez-axis
invariant, and itis one of the groups [9F:,,, S2., Cyui, Chuv, D,y Dyg, Dy, Wheren = 1, 2, ...
is the order of the principle rotational axis. The infinite cyclic grdfs either a screw axis
or a glide plane group. In the latter case its generator in the Koster—Seitz notatiQiis
wherea denotes the translational period of the graupwhile o, is vertical mirror plane.

The generator of the screw axis grafifXa) is z = (C| ga), whereg andr are non-negative
integers such that is multiple ofn. The choice of is not unique: to givem any multiple of

4 may be added, with no effect on the resulting grdupTwo different conventions may be
used to fix the value of: (i) the minimal allowed value is used (thetis coprime with); (ii)

the minimal allowed value being coprime wigtis considered [7]. The translational period of

L contains? monomers, each of them being obtained from the previous one by the rotation
for 27”;’ followed by the fractional translation féfa. There are infinitely many line groups
and they are classified into 13 families, differing by the factérand P, while n enumerates

the groups within the family.

In order to determine the line group comprising all the Euclidean symmetries of the
nanotube, the procedure of folding up the graphene 2D lattice is used. The symmetries of this
honeycomb latticé{ form [10] the diperiodic grougDg28 = Dg, T (with the international
symbol% % %). The translational group is generated by the translations for the basis vectors
ai anda, (with lengthay = 2.461 A). The elementary cell over these vectors contains two
carbon atoms (see figure 1)@t +a3)/3 and 2a; +a3)/3. The principal axis of order six of
the groupDg, (perpendicular td) passes through the origin at the centre of a hexagon. The
elements 0fDg28 which remain the symmetries of the rolled up lattice form the tube’s line

group.

Figure 1. Honeycomb lattice. Left: projections @fi andaz onto the chiral vector and the

orthogonal direction are; andt; (i = 1, 2), respectively, whilg is the chiral angle. The
elementary honeycomb cell is shaded. Right: the sublaktiges shaded,; its subsets is shaded
dark. The lines denote the mirror planes of the lattice.
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At first, the translations are examined. The tube, n,) is on H determined by the
chiral vectore = nyay + npay, (with the lengthc = | /n2 + niny + n2ao and the chiral angle

0 = arctan%): H is rolled up so that becomes the circumference of the tube. The
translations ofH along this chiral vector become the rotations around the tube axis. The
minimal one among them & = ¢/n, wheren is the greatest common divisor @f andn,.

Thus, the group of pure rotations of the tube is the cyclic gr@ypgenerated by the rotation

C, for 2t /n. The pure translations of the tube are the honeycomb translations in the direction
orthogonal tac; the minimal one ist = aja; + aza,, provideda; anda, are coprimes. Then

the orthogonality conditiom - ¢ = 0 is easily solved

2 2
ni+2n; + 2n1 +ny V 3(n1+n2+n1n2)
- a

e L a=lal= R ag. 1)
Here,R = 3 if ny — ny is multiple of 3, andR = 1 otherwise. Knowing: anda, the

screw axis generator is found as follows. Each 2D lattice translation becomes, on the tube,
an element of the group; C,,.. Since the honeycomb is generated by the lattice translations
from its elementary cell, the tube must be generate@iy,, from the pair of C atoms in the
honeycomb elementary cell. In the tube’s elementary cell therg arenonomers, each of
them containing: elementary honeycomb cells (obtained by the actiof',9f and altogether

there are; honeycomb cells in the tube’s period. On the other hand, the area of this cylindrical
surface isa; dividing it by the area of the honeycomb elementary Rellx a,|, one finds:

a =

n% +niny + n%

R )

The primitive translations; and a, of the 2D lattice also generate the rolled-up lattice,
i.e. the groupIy C,, with element(C'Cylr2a) (t = 0,£1,...;s = 0,...,n —1). Let
the element corresponding t@ be (C;"Cy|t:2a) (i = 1,2), i.e. rotation for the angle
¢ = 2n(rt; + gs;/n)/q followed by the translation fot; = #;,na/q. Then, simple geometry
(see figure 1) shows
ns ni 2n1+ (1 +rR)ny 1—rR)ny+2n,
hH=—-—— Ih = — S1=—"T—"—" Sop = — .
n n qR qR
The minimalr that provides the integral solutionssnands; is coprime tog/n (¢(m) is the
Euler function, giving the number of coprimes not greater than

q=2

®3)

ni+2n, — (&2 p(%2)-1 R
po 22 G AR (mogd). @
niR n

The other possible values are obtained by adding to (4) the multiplegrof If the value
(4) andn are not coprimes, the first conventiondoprime tog) is satisfied by some of these
numbers. This completes the determination of the subgigjgp,. It belongs to the first line
group family [7] with the international symbol

2np+n tnzy g
(%)w( ) q —

n
Lq, p=nR— 2

mod 5
TR (modq) ®)
(p is found from (4) analogously tg writing the general element of the line grofig,, in the
form (Cf,|(j + Fr[f])a); Fr denotes the fractional part).

Note that the parameteris the order of the principal axis of the isogonal point group

[7,8]. Only wheng = n do no screw axes emerge (i.e. the generalized translation gfoup
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is pure translational). Nevertheless, according to the lemma proved in the appghdfey
any nanotube has the very specific form:

G = % -2 (mod 12. (6)

Obviouslyg > 2, and all the nanotubes have non-trivial screw axes, i.e. the corresponding line
groups are non-symorphic. Moreovérequals two only ifi; = 1 andri;, being either zero
(thenR = 1) or one R = 3), singling out the zig-za@:, 0) and the armchai¢n, n) tubes,
respectively. Simple inspection of the table of the line groups [7, 8] shows that for2,

only the horizontal axis of order two is compatible with the screw axis, whilg fer2 (then

r = 1), mirror or glide planes may be additionally incorporated. This anticipates that the
zig-zag and armchair tubes have larger symmetry groups then the chiral ones.

When the 2D translations are transferred in the tube’s geometry, the remaining honeycomb
symmetries can be examined. These are point group operationdigprfrotations for%’i,

i =0,...,5around the vertical axis and six vertical mirror planes through the centres of the
hexagons) and their combinations with 2D translations (two types of vertical glide planes—
through the midpoints of the adjacent edges and through the midpoints of the next to nearest
neighbour edges of the carbon hexagons, figure 1). According to the emphasized compatibility
with the derived non-trivial screw axis, only the rotation fomay remain the symmetry of

the rolled up lattice; indeed, this rotation gives the horizontal &xf the tube, as it is easily
seen. Additional symmetries may appear only for the zig-zag and armchair tubes. Obviously,
only in these cases is there a vertical mirror plane filbg) containing the chiral vectat; it
becomes the horizontal mirror plaag of the folded lattice. Also, only in these cases is there

a plane fromDyg, that is orthogonal to the chiral vector, as well as the glide planes parallel
with and orthogonal to the chiral vector. These planes become on the tube, the vertical mirror
planeo, = Uoy;, the roto-reflectional plane, C,, and the vertical glide pIan(sCz,,oU|%a),
respectively.

Thus, the derivation of the symmetry group of the single-wall tubes is accomplished. As
for the chiral tubes, besides the screw axes and pure rotations, there is also the horizontal axis
U, enlarging the point factor t®,. For the zig-zag and the armchair tubes only, the point
factor isD,,;,, containing additional mirror planes. Altogether, the line group of the tube is:

Lchiral = Tqun = LqP22 @)
Larmchair= ing—zag = sz;,Dnh = L2n,/mcm

with ¢, r and p given by (2), (4) and (5), respectively. The isogonal point groups [8]re
for the chiral tubes, andD,,;, for the zig-zag and armchair tubes.

These results are derived for the tubes with> n, > 0, i.e. for the chiral angles
0 <6 < %. Asforthe tubes witm, > n; > 0 (§ < 0 < 3), they are obtained from the
previously considered tubes as their mirror images in the plane along the armchair direction
(1,1). Therefore, the line group parameterandn are the same for the pair of the mirror
reflected tubesn1, ny) and(ny, n1), while the helical parameters(coprime withg) and p
are changed t§ — r andg — p, since the reflection changes the sense of the screw axis
rotation. The remaining chiral vectors are obtained by the rotations for multiples/6fffom
the encountered vectors with<Q 6 < n/3, yielding the equivalent tubes with the same line
groups.

3. Uniqueness and lattice geometry

The set of the generators of the derived line groups contains, bésided, in the zig-zag and
armchair casesy,, two generators of the groug, = T;C,. There are two natural choices
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of them: the factorized form emphasizes the pair (C;|7a) andC,, while the international
notation is based on the generatofs:) andh = (C,|£a). Since (as has been pointed out)

T, C, corresponds to the group of 7, the latter must be generated by the pair of the vectors
corresponding to the generators of the former one. Easy calculation with the help of (3) and
(1) shows that the corresponding vectors are= — =Rtz g, 4 2”1"(;;'{73)”2(12, ¢ (the

first choice),a andh = B=221t2n g, 4 2urtpinz g, (the second choice). The coordinates
of all these generators must be coprimes, to ensure that the obtained cell is elementary (the
parameters and p can be also found from this requirement).

Note that all the involved quantities can be separated into two classes: those independent
of n (e.g.a, r, R, z, h), and those proportional o (e.g.c, n, ¢, p). The latter ones can be
divided byn, yielding additional quantities independenidiike G, é = fiya1 +iizas, p). If H
denotes the subset of the honeycomb latticeith coprime coordinates, then to each vector
¢ from H corresponds a unique ‘projectiod’from H (this map is obviously idempotent).

All the collinear vectors ir{ have the same projection. The vectors corresponding to the
generators of the line groups are fro being independent om, the same vectors, é, a

and h characterize all the nanotubes with the collinear chiral vectors. These chiral vectors
differ by lengthsc = n¢. Sincen becomes the order of the genera€grof the line group,

the corresponding line groups are different: their generators differ despite having the same
representative vectors 6i. This means that the line group parametefgiven by (4)) andcz

are constant along the same chiral direction, wiikdetermined by the valugcorresponding

to the projectior? of this direction ontdH, and to all other collinear lattice vectors (i)
correspondg = nqg.

The latticeH is a disjoint union of the subsett, andHz, containing the chiral vectors with
R = landR = 3, respectively (the vector O istiz). The first subset generates (by the integer
linear combinations) the whole lattieg while H3 generates the sublatti&, of 7, containing
all the vectorqny, ny) such thati; — ny is multiple of three. Its complemefits = H \ Huy
is a subset irt{; (the tubes with the chiral vectors frohd,, are metallic, and the other ones
are semiconducting). Projections&§ to H give the subsetis = H N Hs = H N Hyy, with
the coprime pairsii1, o) such thati; — 7i, is multiple of three 1 — no = 3k meansk = 3
onH), while 1 is projected onto the remaining patt = H N Hy = H N Hs.

The line group parameterdetermines the lengthof the chiral vector ag = 1/@ao.

Consequently, on each of the subsktsand 3 the chiral vectors of the tubes with the same
g = ¢ are on the same circle with the radicis Analogously, the length of the vecteris
determined by; andr as

3 +r2R2
Thus, all the tubes with sameandg have the vectors on the same circle with radius The

angley between the vectoksandz is given by tany = +/3/rR, revealing that the parameter
r determines the angle of the helix generated by the helical gftjup

= (Z+un+)a; =

Theorem 1. The line group parameterfy, r, n} uniquely characterize the non-equivalent
tubes, except that t@n, 1, n} correspond two tubes: the zig-zag tulag 0) and the armchair
one(n, n).

Proof. Sincer is independent of, andg is proportional ton, it is sufficient to prove the
theorem for the parametef, r, 1} of the line groups corresponding t6. At first, we prove
that these parameters can be the same for two tubes with the chiral veatatg’ both from
the same subsét; or /3 if and only if they are equivalent. Indeed, sinte- & andz = Z/,
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while x = x’, there is a rotation for angle— 6’ mapping the lattice basig, z} into the basis

{¢, 2’}. But, connecting two bases #f, this rotation is a symmetry of the honeycomb lattice:

6 — 6’ is multiple of Z, and the tubes are equivalent. It remains to compare the tubes from
H1 andHs. Sincez? is a positive integer (in the units af), (8) requires?R? + 3 = 20z RG

with o being a positive integer. For the subséts and s, this givesr? + 3 = 2a;4 and
3r?+1 = 2a3q. Itfollows that(3a; — a3)§ = 4, with the unique solutiof = 2,01 =z =1

andr = 1. |

From (1) followsa, — a3 = —3(n1 + i12) /R, and this is multiple of three if and only if
R = 1. Thus,a andc are always from the different subséts. Moreover, ifc (together with
¢) is from'H3, thenz must be frontH;, since otherwisé andz would not generat@. On the
other hand, it is fromH, then the coordinates efsatisfy(z1 —z2)g = (iy—7i2)r —3(1+i12).
It has been emphasized that instead ,ahe values, = r +ag (0« = 0,...,n — 1) can be
used. Among them, at least one is a multiple of three, giving the equivalent gengrétom
H3 (since by (6)g is not divisible by three). To resume, the bajgise} generating the tubes
line group can be always chosen such that its vectors belong to different stfxsets

Some specific symmetry properties of the metallic tubes can be derived. Bjpds
a sublattice inH, with the elementary cell containing three cells7ef the metallic tubes
can be studied also with help of this lattice. The translational gfumf #,, is an index-
three subgroup dI', resulting on the tube in the index-three subgroup of (5). There are two
possibilities fore: either it is fromH3 (as well as¢) or from Hj. In the first casea is
in Ha, i.e. in Hg, as well asz. Thus, these vectors should be substituted &#yaBd % to
obtain theH,, lattice vectors, with 3 andé generatindl’y,. On the tube, these correspond to
(C;|$a)3 andC,, generating the line gl’OL[ﬁ;’r(?:a)Cn. If ¢ € H1 N Hy, thenn is divisible
by three, therm and (suitably choser) are in3, bute¢ is not, and 8 must be chosen as the
generator of thé{,,. On the tube: andé correspond thC;|§a) andC,,3, generating the line

grouqu’g(a)Cn/g. Thus, a metallic tube is a quasi-1D crystal composed of three subcrystals
obtained by the action of the found groups on the pair of the neighbouring C atoms: each
subsystem contains every third monomer of the original tulhe 4 3, and one third of each
original monomer ifR = 1.

4. Concluding remarks

The full symmetry group of the single-wall carbon nanotubedae22 = T; D, for the chiral

tubes andL2n,/mcm = TzlnDnh for the zig-zag(n, 0) and the armchai¢n, n) ones. These
groups of the geometrical symmetries contain horizontal rotational axes and, in the cases of
the zig-zag and armchair tubes, mirror and glide planes, in addition to the previously reported
rotations, translations and screw axes. The paramgtensgr (andp) of the helical group are

found in the simple and closed form. The principal axis of the isogonal point group of the tube
is of the ordey = 2n (mod 121), halving the number of the carbon atoms in the translational
period of the tube.

The different tubes have different symmetry groups. Especially, knowing the symmetry
parameterg, » andn, the corresponding nanotube can be identified, with the exception of
the pairs(n, 0) and (n, n), having the same groups, but still different translational periods.
The symmetry parametegs r andn are discrete, thus allowing, at least in principle, exact
experimental determination, being sufficient to identify the tube. Moreover, single-wall carbon
tubes are single orbit systems, i.e. the whole tube is generated by the line group action on the
single C atom. This means that the symmetry completely determines the geometry of the
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tube and all consequent physical characteristics. For the chiral tubes the stabilizer is trivial,
i.e. when the initial C atom is fixed, each other atom uniquely determines the element of the
line group mapping it to the initial one (the orhit in the notation of [7]). The zig-zag and
armchair tubes are produced by the action of the subgfgup, on an arbitrary atom, and

the stabilizers of the atoms contain two elements (the orbitsqdi@ the zig-zag, and; for

the armchair tubes).

There are many physical properties based on symmetry, and the presented classification
of the nanotubes according to their symmetry can be widely exploited. At first, the symmetry
determines the conserved quantum numbers. To begin with the single-wall nanotubes. The
translational periodicity is reflected in the conserved quasi-momehttaking the values from
the 1D Brillouine zond—m, =], or its irreducible domain [11] [Oz]. Also, thez-component
of the quasi-angular momentum is the quantum number caused by the symmetry of the
isogonal rotations; it takes on the integer values from the intgrvl ], and characterizes
the nanotube energy bands. These quantum numbers are usually used (e.g. [2]). Alternatively,
the helical quasi-momentuie [0, 7] can be considered; it not only incorporates the quasi-
momentum, but also a part of the angular momentum. The remaining quasi-angular momentum
is then given by the quantum numbeértaking the integer values from-3, 5] (k and
are used in [5]). The next quantum number is the parity with respect to the reversal of the
z-axis, induced by the horizontal rotational axis Finally, only for the zig-zag and the
armchair tubes, is there additional vertical mirror plane parity. The quantum numbers are
closely related to the representations of the line groups, and classify the irreducible ones (see
[12] for the representations related koandm, and [7] fork ands). Thus, it is easy to
make the assignation of the energy bands (electronic, phononic etc) by the quantum numbers,
immediately giving their degeneracy and the selection rules [13, 7]. In this context, let us only
mention here that the zero gap of the metallic tubes (within the tight binding approximation
[2, 5]) for the tubes with the chiral vectors frof,, appears since the contributions to the
electronic band energy of the mentioned three identical subcrystals cancel for some bands.

Many other physical applications of the line group symmetry are already considered, and
may now be directly applied: the results on the specific forms of the tensorial characteristics
of the tubes [14] (determined by the isogonal groups), vibronic coupling [7], phase transitions,
invariant potentials [15] and x-ray form factors [16] are available. Finally, let us emphasize
that, since the tubes are single-orbit systems, the quantum states of the (quasi)particles related
to different physical processes transforms according to the ground representation [9] of the
symmetry group. This simplestinduced representation enables one to apply the most powerful
modified group projector technique [17], and its computer implementations in the physics of
nanotubes [8].
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Appendix. Orders of isogonal rotations

As shown in the main text, the order of the principal axis of the isogonal grogp-s:g. It
appears that the integgmay take quite specific values.

Lemma 1. For any pair of integers; andn, with the greatest common diviser there exist
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non-negative integek, satisfying:

2 2 : e —
2”1+”1”2+”2:12k+2 with 7 — 3 if ni—n,=0 (mod )

1= n?R 1 otherwise

Proof. Using coprimesi; and ny, with the differenceA = n; — ny, one easily finds

G = 2% + fip + 13)/R = 2(3i2 + 3Aii, + A?)/R. All possible cases are examined:
if R = 3, thenA = 3d and whileri, = 3m £ 1, excluding the case when simultaneously
m andd are odd and even (then and#, are both even, and not coprimes)Rf= 1, then

A = 3d £+ 1, excludingi, even whiled is odd. It is easily checked that— 2 is multiple of
12. O

Consequentlyg is not divisible by three, but it is always even and greater than one.
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